
 

 

LI18NUX 2000 

Globalization Specification 

 

 

Version 1.0 with Amendment 23 DRAFT 
 

 

Linux Internationalization Initiative (Li18nux) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2000 The Free Standards Group.  All rights reserved. 
 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 1 - 

1. Foreword 

1.1 Scope 

This document specifies interfaces and functionalities that must be supported by operating systems to 

run internationalized application software.  This document also includes recommendations for 

operating systems to ease development of internationalized application software. 

This specification only lists internationalization aspects of each functionality provided by the 

conforming operating systems. 

1.2 Normative References 

[POSIX.1] 

ISO/IEC 9945-1:1996 Information technology — Portable Operating System Interface 

(POSIX) — Part 1: System Application Program Interface (API) [C Language] 

[POSIX.2] 

ISO/IEC 9945-2:1993 Information technology — Portable Operating System Interface 

(POSIX) — Part 2: Shell and Utilities 

[ISO C] 

ISO/IEC 9899:1990 Programming Languages — C 

ISO/IEC 9899:1990/Amd.1:1995 Programming Languages — C Amendment 1: C Integrity 

[ISO C 99] 

ISO/IEC 9899:1999 Programming Languages — C 

[XCU5] 

The Single UNIX Specification, Version 2 

Commands and Utilities, Issue 5 

(The Open Group CAE Specification C604) 

[XBD5] 

The Single UNIX Specification, Version 2 

System Interface Definitions, Issue 5 

(The Open Group CAE Specification C605) 

[XSH5] 

The Single UNIX Specification, Version 2 

System Interfaces and Headers, Issue 5 (2 volumes) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 2 - 

(The Open Group CAE Specification C606) 

[XCURSES4.2] 

The Single UNIX Specification, Version 2 

X/Open Curses (XCurses), Issue 4 Version 2 

(The Open Group CAE Specification C610) 

[ICU] 

International Components for Unicode 1.6.0 
http://oss.software.ibm.com/icu/ 

[ICU4J] 

International Components for Unicode for Java 
http://oss.software.ibm.com/icu4j/icu4jhtml/index.html 

[Perl 5.6] 

Perl 5.6 (March 23, 2000) 
http://www.perl.com/pub/n/Perl_5.6.0_is_out! 

[Java] 

Java 2 Platform, Standard Edition, v1.3 API Specification 
http://java.sun.com/products/jdk/1.3/docs/api/index.html 

[X11R6] 

The X Window System, Version 11, Release 6 
ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/ 

[Unicode 3.0] 

The Unicode Standard, Version 3.0 

The Unicode Consortium, Addison Wesley Longman, ISBN 0-201-61633-5 

[ISO 10646-1] 

ISO/IEC 10646-1:2000 Information technology — Universal Multiple-Octet Coded Character 

Set (UCS) — Part 1: Architecture and Basic Multilingual Plane 

[ISO 639] 

ISO 639:1988 Code for the representation of names of languages 

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu4j/icu4jhtml/index.html
http://www.perl.com/pub/n/Perl_5.6.0_is_out!
http://java.sun.com/products/jdk/1.3/docs/api/index.html
ftp://ftp.x.org/pub/R6.4/xc/doc/hardcopy/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 3 - 

[ISO 3166-1] 

ISO 3166-1:1997 Codes for the representation of names of countries and their subdivisions 

— Part 1: Country codes 

[IANA-Charset-Registry] 

IANA Registry of Character Sets 
http://www.isi.edu/in-notes/iana/assignments/character-sets 

[ISO 8859-1] 

ISO/IEC 8859-1:1998 Information technology — 8-bit single-byte coded graphic character 

sets — Part 1: Latin alphabet No. 1 

[ISO 8859-2] 

ISO/IEC 8859-2:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 2: Latin alphabet No. 2 

[ISO 8859-5] 

ISO/IEC 8859-5:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 5: Latin/Cyrillic alphabet 

[ISO 8859-7] 

ISO 8859-7:1987 Information processing — 8-bit single-byte coded graphic character sets — 

Part 7: Latin/Greek alphabet 

[ISO 8859-9] 

ISO/IEC 8859-9:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 9: Latin alphabet No. 5 

[ISO 8859-13] 

ISO/IEC 8859-13:1998 Information technology — 8-bit single-byte coded graphic character 

sets — Part 13: Latin alphabet No. 7 

[ISO 8859-15] 

ISO/IEC 8859-15:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 15: Latin alphabet No. 9 

 

1.3 Conformance 

1.3.1 Conforming Environments 

For conformance purposes the following environments are defined: 

http://www.isi.edu/in-notes/iana/assignments/character-sets


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 4 - 

(1) Application Execution Environment [Obsolescence] 

Application Execution Environment is a minimum operating system environment that can run 

internationalized application software.  The functionalities defined in this environment are mandatory 

and shall be present on all conforming implementations. 

The following sections are applied to Application Execution Environment: 

3. Base Libraries 

4. Shells and Utilities 

 

(2) End User Environment 

End User Environment is an operating system environment with user interface.  It is assumed that 

End User Environment has a set of utilities for user interaction. 

This environment includes all the interfaces and utilities provided by Application Execution 

Environment.  Additional interfaces and utilities are defined for the following sub-environments: 

(a) Server Environment [Obsolescence] 

Server environment is an operating system environment suitable for backend server purposes.  

Graphical user interfaces are not required in this environment. 

The following sections are applied to Server Environment: 

3. Base Libraries 

4. Shells and Utilities 

5. Programming Languages (with Software Development Options) 

9. Network Servers 

(b) Desktop Environment 

Desktop environment is an operating system environment suitable for end user interaction.  

Graphical user interface is required in this environment. 

The following sections are applied to Desktop Environment: 

3. Base Libraries 

4. Shells and Utilities 

5. Programming Languages (with Software Development Options) 

6. Graphical User Interface 

7. Input Methods 

8. Output Methods 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 5 - 

10. Internet Tools 

 

If an interface or utility is defined as “supported in End User Environment”, that interface or utility shall 

be available in both Server and Desktop environments. 

The following options can be supported in each environment: 

(3) Software Development Options 

If any of these options is supported, utilities, libraries and associated modules to develop 

internationalized software (such as compilers or interpreters) shall be provided. 

In this version of the specification, the following options are available: 

! C Language Development Option 

! Java Language Development Option 

1.3.2 Conformance Levels 

Several levels are defined for conformance for each environment.  These levels are defined as 

follows: 

(1) Level 1 

The level 1 is the bottom-line level of conformance.  All conforming implementations shall provide this 

level of interfaces and utilities to conform to this specification.  If level is not specified in the 

specification, that specification shall be considered as Level 1. 

(2) Level 2 

The level 2 is more advanced or extended level of conformance.  Conforming implementations are 

encouraged to provide this level of interfaces and utilities to conform to this specification, but it is not 

mandatory. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 6 - 

2. Terminology 

2.1 Definition of Terms 

The following terms are used in this specification: 

Implementation-defined 

A value or behavior is implementation-defined when it is left to the implementation to define 

[and document] the corresponding requirements for correct application behavior. 

May 

With respect to implementations, the word “may” is to be interpreted as an optional feature 

that is not required in this specification but can be provided. With respect to application, the 

word “may” means that the feature is optional. The term “optional” has the same definition as 

“may”. 

Shall 

In this specification, the word “shall” is to be interpreted as a mandatory requirement on the 

implementation or on application, depending upon the context. The term “must” has the 

same definition as “shall”. 

Should 

With respect to implementations, the word “should” is to be interpreted as an implementation 

recommendation, but not a requirement. With respect to application, the word “should” is to 

be interpreted as recommended programming practice. 

Supported 

Certain facilities in this specification are optional. If a facility is supported, it behaves as 

specified by this specification. 

If a facility is “supported” by an implementation, the implementation must document how to 

obtain and install the facility, or the facility is installed by installer of the implementation by 

explicitly selected by the user or implicitly installed with other system components.  If an 

implementation “supports” a facility, the distributor of the implementation shall commit that 

the facility can run on the implementation. 

Unspecified 

When a value or behavior is unspecified, the specification defines no portability requirements 

for a facility on an implementation even when faced with an application that uses the facility. 

An application that requires specific behavior in such an instance, rather than tolerating any 

behavior when using that facility, is not a portable application. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 7 - 

Provided 

Certain facilities in this specification are mandatory and implemented in all conforming 

implementations. 

Obsolescence 

The indication of that subject statement or clause will be removed from future revision of this 

standard. 

  

2.2 General Terms 

character 

A sequence of one or more bytes representing a single graphic symbol or control code. 

This term corresponds to the ISO C standard term multibyte character (multi-byte character), 

where a single-byte character is a special case of a multi-byte character.  Unlike the usage 

in the ISO C standard, character here has no necessary relationship with storage space, and 

byte is used when storage space is discussed. 

[Single UNIX Specification, Version 2] 

byte 

An individually addressable unit of data storage that is equal to or larger than an octet, used 

to store a character or a portion of a character; see character. 

A byte is composed of a contiguous sequence of bits, the number of which is 

implementation-dependent.  The least significant bit is called the low-order bit; the most 

significant is called the high-order bit. 

Note that this definition of byte deviates intentionally from the usage of byte in some 

international standards, where it is used as a synonym for octet (always eight bits).  On a 

system based on the ISO/IEC 9945-2:1993 standard, a byte may be larger than eight bits so 

that it can be an integral portion of larger data objects that are not evenly divisible by eight 

bits (such as a 36-bit word that contains four 9-bit bytes). 

[Single UNIX Specification, Version 2] 

character set 

A finite set of different characters used for the representation, organization or control of data. 

[Single UNIX Specification, Version 2] 

coded character set 

A set of unambiguous rules that establishes a character set and the one-to-one relationship 

between each character of the set and its bit representation. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 8 - 

[Single UNIX Specification, Version 2] 

codeset 

The result of applying rules that map a numeric code value to each element of a character 

set.  An element of a character set may be related to more than one numeric code value but 

the reverse is not true.  However, for state-dependent encodings the relationship between 

numeric code values to elements of a character set may be further controlled by state 

information. 

The character set may contain fewer elements than the total number of possible numeric 

code values; that is, some code values may be unassigned. 

[Single UNIX Specification, Version 2] 

internationalization 

The provision within a computer program of the capability of making itself adaptable to the 

requirements of different native languages, local customs and coded character sets. 

[Single UNIX Specification, Version 2] 

globalization 

A product development approach which ensures that software products are usable in the 

worldwide markets through a combination of internationalization and localization. 

locale 

The definition of the subset of a user's environment that depends on language and cultural 

conventions. 

[Single UNIX Specification, Version 2] 

localization 

The process of establishing information within a computer system specific to the operation of 

particular native languages, local customs and coded character sets. 

[Single UNIX Specification, Version 2] 

local customs 

The conventions of a geographical area or territory for such things as date, time and currency 

formats. 

[Single UNIX Specification, Version 2] 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 9 - 

portable filename character set 

The set of characters from which portable filenames are constructed. For a filename to be 

portable across implementations conforming to this specification set and the ISO POSIX-1 

standard, it must consist only of the following characters: 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 . _ - 

 

The last three characters are the period, underscore and hyphen characters, respectively. 

The hyphen must not be used as the first character of a portable filename. Upper- and 

lower-case letters retain their unique identities between conforming implementations. In the 

case of a portable pathname, the slash character may also be used. 

[Single UNIX Specification, Version 2] 

file-system-safe character 

Multibyte character which does not contain either 0x00 or 0x2F in any byte of its 

representation. 

Input Method Engine 

A part or a module of building block of input method which implements a language- or a 

script-specific logic of composing a string from one or more sequence of event or a string, 

which can be independent from windowing system, graphical user interface, or visual 

appearance. 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 10 - 

3. Base Libraries 

(1) Scope 

This chapter defines runtime library interfaces required to conform to this specification.  Conforming 

implementations shall provide the C language APIs defined by [ISO C] and [POSIX.1].  In addition to 

the C language interface, conforming level 2 implementations shall provide interfaces for other 

programming languages. 

(2) Requirements 

Conforming implementations shall provide the internationalization functions listed in the Table 3-1 and 

the headers listed in the Table 3-2.  The specifications of the functions and the definitions of the 

headers shall conform to [POSIX.1] and [ISO C]. 

In addition to the functions in the Table 3-1, conforming implementations shall provide the wide 

character and wide string I/O functionality through printf/scanf family of functions as specified in [ISO 

C]. 

Table 3-1 C Language internationalization functions 

btowc() fgetwc() fgetws() fputwc() fputws() 

fwide() fwprintf() fwscanf() getwc() getwchar() 

iswalnum() iswalpha() iswcntrl() iswctype() iswdigit() 

iswgraph() iswlower() iswprint() iswpunct() iswspace() 

iswupper() iswxdigit() localeconv() mblen() mbrlen() 

mbrtowc() mbsinit() mbsrtowcs() mbstowcs() mbtowc() 

putwc() putwchar() setlocale() strftime() swprintf() 

swscanf() towctrans() towlower() towupper() ungetwc() 

vfwprintf() vswprintf() vwprintf() wcrtomb() wcscat() 

wcschr() wcscmp() wcscoll() wcscpy() wcscspn() 

wcsftime() wcslen() wcsncat() wcsncmp() wcsncpy() 

wcspbrk() wcsrchr() wcsrtombs() wcsspn() wcsstr() 

wcstod() wcstok() wcstol() wcstombs() wcstoul() 

wcsxfrm() wctob() wctomb() wctrans() wctype() 

wmemchr() wmemcmp() wmemcpy() wmemmove() wmemset() 

wprintf() wscanf()    

Table 3-2   C language headers 

<locale.h> <wchar.h> <wctype.h> 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 11 - 

Note: Application programs should refer to limits in symbolic names, such as MB_CUR_MAX 

and MB_LEN_MAX, not the implementation-specific values directly. 

Conforming level 2 implementations shall provide the following functions.  The specifications of the 

functions shall conform to [ISO C 99]. 

wcstof() wcstold() wcstoll() wcstoull() 

Conforming implementations shall provide the internationalization functions listed in the Table 3-3 and 

headers listed in the Table 3-4.  The specifications of the functions and the definitions of the headers 

shall conform to [XSH5]. 

Table 3-3 Additional C Language internationalization functions 

catclose() catgets() catopen() 

iconv() iconv_close() iconv_open() 

nl_langinfo() strfmon() strptime() 

wcswidth() wcwidth()  

 

Table 3-4 Additional C language headers 

<iconv.h> <langinfo.h> <monetary.h> <nl_types.h> 

 

Conforming implementations shall provide the message handling functions listed in Table 3-5 and 

headers listed in Table 3-6 which is specified in Annex C: Publicly Available Specifications. 

Table 3-5 Additional message handling functions 

gettext() dgettext() textdomain() bindtextdomain()  

dcgettext() ngettext() dngettext() dcngettext()  

bind_textdomain_codeset()    

 

Table 3-6 Additional message handling functions headers 

<libintl.h> 

 

Conforming level 1 implementations should support the POSIX regular expression functions listed in 

the Table 3-7 and the header <regex.h>. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 12 - 

The specifications of the functions and the definitions of the header should conform to [XSH5]. 

Table 3-7 POSIX regular expression functions 

regcomp() regexec() regerror() regfree() 

 

Conforming implementations shall provide the application execution environment in which the 

internationalized applications (written by using the internationalization functions above) can behave 

appropriately depending on the value of environment variables, without requiring any change of the 

applications. 

See Annex A: Environment Variables for the environment variables to which internationalization 

functions will refer. 

Conforming implementations shall support the application execution environments specified in Annex 

B. 

Conforming level 2 implementations shall define _XOPEN_CURSES version test macro and provide 

the internationalized curses library functions which are specified in [XCURSES4.2]. 

Conforming level 2 implementations shall support Java Runtime environment ([Java]), 

Internationalization Components for Unicode [ICU], ICU for Java [ICU4J], and Perl execution 

environment [Perl 5.6] including Perl interpreter and modules. 

The following Perl modules are related with internationalization: 

(see http://www.perl.com/CPAN-local/modules/00modlist.long.html#Part2-ThePerl5M) 

Name Description 

I18N::  

::Charset Character set names and aliases 

::Collate Locale based comparisons 

::LangTags compare & extract language tags (RFC1766) 

::WideMulti Wide and multibyte character string 

  

Locale::  

::Country ISO 3166 two letter country codes 

::Date Month/weekday names in various languages 

::Langinfo The <langinfo.h> API 

http://www.perl.com/CPAN-local/modules/00modlist.long.html#Part2-ThePerl5M


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 13 - 

::Language ISO 639 two letter language codes 

::Msgcat Access to XPG4 message catalog functions 

::PGetText What GNU gettext does, written in pure perl 

::gettext Multilanguage messages 

  

Unicode::  

::String String manipulation for Unicode strings 

::Map8 Convert between most 8bit encodings 

 

(3) Implementation Examples 

GNU C library version 2.2 

(4) Future Direction 

In the next version of this specification, conforming implementations may be required to provide 

POSIX regular expression functions and internationalized curses library functions. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 14 - 

4. Shells and Utilities 

(1) Scope 

This chapter defines runtime environment required to support traditional UNIX command interpreter 

called “shell” and other basic utilities defined in [POSIX.2]. 

(2) Requirements 

! Shell implementation 

Conforming level 1 implementations shall be able to use Portable Filename Character Set defined 

in [POSIX.2].  For filename globbing, conforming level 1 implementations shall provide the 

functionality defined in [POSIX.2], with the following exceptions: [refer to Annex F: A] 

• Range expression (such as [a-z]) can be based on code point order instead of collating 

element order. 

• Equivalence class expression (such as [=a=]) and multi-character collating element 

expression (such as [.ch.]) are optional. 

• Handling of a multi-character collating element is optional. 

Conforming level 2 implementations shall be able to use file-system-safe characters as 

arguments and filenames. 

Conforming level 2 implementations shall implement the globbing functionality of the shell as 

defined in [POSIX.2]. 

Conforming implementations shall provide a shell that supports the functionalities of “Bourne 

shell”, with internationalization capabilities defined above. 

! The utilities implementation 

 (a) Locale 

Conforming implementations shall provide the following utilities to generate and refer to locale 

definitions as specified in [XCU5]: 

locale localedef 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 15 - 

(b) Text Editor 

Conforming implementations shall provide the following utilities to edit text files encoded in the 

supported codesets as specified in [XCU5]. 

Note: To edit text is to determine character boundaries correctly and perform operations such as 

insert, copy and delete characters based on the determined character boundaries.  Input and 

output requirements are specified in 7. Input Methods and 8. Output Methods respectively. 

ed ex vi 

(c) Date and Time formatting 

Conforming implementations shall provide the following utilities to display locale-specific date and time 

formats as specified in [XCU5]: [refer to Annex F: B] 

at cal cpio date ls ps tar Time  

 

In the “C” and “POSIX” locales, the date and time formats used by the utilities shall be in fixed formats 

for ease of parsing, for the messages can be used as input to other programs.  In the other locales, 

the date and time formats should change depending on the current locale for end-users’ easeThis 

specification has no requirements on date and time formatting functionality of shells and utilities. 

(d) Text Processing 

Conforming implementations shall provide the following utilities to process text as specified in [XCU5]. 

comm diff egrep expand fgrep fold 

comm diff egrep expand fgrep fold 

grep iconv join more mailx man  

grep iconv join more mailx  

nm (symbol sorting order) od (floating point) pr printf 

sed sort tr unexpand uniq wc  

sed sort unexpand uniq wc  

 

The mailx utility can be implemented as Mail.  The more utility can be implemented as less. 

 

(e) Regular Expressions 

On conforming level 2 implementations, utilities that process regular expressions shall support Basic 

Regular Expression (BRE) and Extended Regular Expression (ERE) as specified in [POSIX.2]. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 16 - 

On conforming level 1 implementations, utilities that process regular expressions should support BRE 

and ERE as specified in [POSIX.2].  If an implementation is not able to support BRE and ERE, it may 

support the regular expression syntax defined in re_comp() of [XSH5] instead of BRE and the regular 

expression syntax defined in regcmp() of [XSH5] instead of ERE., with the following exceptions: [refer 

to Annex F: A] 

• Range expression (such as [a-z]) can be based on code point order instead of collating 

element order. 

• Equivalence class expression (such as [=a=]) and multi-character collating element 

expression (such as [.ch.]) are optional. 

• Handling of a multi-character collating element is optional. 

The following utilities are relevant: 

egrep grep sed awk 

 

(f) Filename Handling 

Conforming implementations shall provide the following utilities to correctly handle filenames that use 

file-system-safe characters.  For filename globbing, conforming level 1 implementations shall provide 

the functionality defined in [POSIX.2], with the following exceptions: [refer to Annex F: A] 

• Range expression (such as [a-z]) can be based on code point order instead of collating 

element order. 

• Equivalence class expression (such as [=a=]) and multi-character collating element 

expression (such as [.ch.]) are optional. 

• Handling of a multi-character collating element is optional. 

cpio find ls tar 

 

(g) General Text Editor 

Conforming implementations shall support at least one text editor that can edit text encoded in UTF-8. 

Note: To edit text is to determine character boundaries correctly and perform operations such as 

insert, copy and delete characters based on the determined character boundaries.  Input and 

output requirements are specified in 7. Input Methods and 8. Output Methods respectively. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 17 - 

(h) Terminal Emulator 

Conforming implementations shall support terminal emulators that can handle codesets for supported 

locales. 

Conforming implementations should support terminal emulation for all supported locales, but an 

implementation may provide different terminal emulators for each locale. 

(i) Message catalogs 

Conforming implementations shall provide the following utilities to convert message catalog source 

files into message catalogs. 

gencat msgfmt 

 

Conforming implementations with C Language Development Option shall provide the following utilities 

to create and update message catalog source files. 

msgmerge xgettext 

 

(j) Message Handling 

Conforming implementations shall provide the following utility to handle localized messages. 

gettext 

  

 (3) Implementation Examples 

Examples of level 1 implementation 

GNU bash 

GNU textutils 

GNU shellutils 

GNU fileutils 

 

Terminal Emulators: 

kterm and kon. 

jfbterm, supporting CJK, working under frame buffer, output only. 

rxvt, supporting CJK, working under X Window System. 

Unicon available at: 
http://turbolinux.com.cn/TLDN/chinese/project/unicon/ 

http://turbolinux.com.cn/TLDN/chinese/project/unicon/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 18 - 

zhcon by Bluepoint Corp.: 
http://openunix.org/ 

cce (Console Terminal) available at: 
http://programmer.lib.sjtu.edu.cn/cce/cce.html 

XLinux console, supporting 12 languages: 
 http://www.xlinux.com.tw/ 

 

Unicode fonts and tools for X11: 
http://www.cl.cam.ac.uk/~mgk25/ucs-fonts.html 

XFree86 4.0.1 (includes already the above): 
http://www.zepler.org/~rwb197/xterm/ 

(4) Future Direction 

In a future version of this specification, shell’s function of handling file-system-safe characters will 

become mandatory.

http://openunix.org/
http://programmer.lib.sjtu.edu.cn/cce/cce.html
http://www.xlinux.com.tw/
http://www.cl.cam.ac.uk/~mgk25/ucs-fonts.html
http://www.zepler.org/~rwb197/xterm/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 19 - 

5. Programming Languages 

(1) Scope 

This chapter defines the requirements for various programming languages.  Only programming 

languages with internationalization requirements are listed here.  Note that the specifications defined 

by this chapter shall be provided by conforming implementations if the relevant Software Development 

Option is supported. 

(2) Requirements 

Conforming level 2 implementations with Software Development Options shall support the compiler or 

interpreter for the following languages: 

! C (if the implementation supports the C Language Development Option) 

! Java (if the implementation supports the Java Language Development Option) 

! Perl 

Each programming language shall be internationalized as specified in the following specifications: 

! C language as specified in [ISO C] 

! Java language as specified in [Java] 

! Perl language as specified in [Perl 5.6] 

Note: See 3. Base Libraries about runtime environment of Perl and Java languages. 

(3) Implementation Examples 

The following implementation examples are available for these languages: 

C: GNU Compiler Collection 
http://www.gnu.org/software/gcc/gcc.html 

C: Fortran & C Package (Linux) 

Fujitsu Kyushu System Engineering Limited (in Japan) 
http://www.fqs.co.jp/fort-c/ 

Fujitsu C/C++ Express (Linux) 

Fujitsu America Inc. (in US) 
http://www.tools.fujitsu.com/ 

    Perl: 
http://www.perl.com/pub/n/Perl_5.6.0_is_out! 

http://www.gnu.org/software/gcc/gcc.html
http://www.fqs.co.jp/fort-c/
http://www.tools.fujitsu.com/
http://www.perl.com/pub/n/Perl_5.6.0_is_out!


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 20 - 

Java:  
 http://java.sun.com/ 

(4) Future Directions 

None 

http://java.sun.com/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 21 - 

6. Graphical User Interface 

6.1 Graphic Libraries 

(1) Scope 

This chapter defines runtime library interfaces for graphical user interface (GUI).  Conforming 

implementations shall provide the graphical user interface defined by the X Window System Version 

11 Release 6 [X11R6]. 

(2) Requirements 

Conforming implementations shall provide the API for following functions: 

! Locale 

setlocale() 

XSupportsLocale() 

XSetLocaleModifiers() 

 

! Internationalized Text Drawing 

XCreateFontSet() — not recommended (use XOpenOM()/XCreateOC()) 

XFreeFontSet() 

XFontsOfFontSet() 

XBaseFontNameListOfFontSet() 

XLocaleOfFontSet() 

XContextDependentDrawing() 

XExtentsOfFontSet() 

XmbTextEscapement() 

XwcTextEscapement() 

XmbTextExtents() 

XwcTextExtents() 

XmbTextPerCharExtents() 

XwcTextPerCharExtents() 

XmbDrawString() 

XwcDrawString() 

XmbDrawImageString() 

XwcDrawImageString() 

XmbDrawText() 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 22 - 

XwcDrawText() 

 

! X Output Methods—X11R6 Extension 

XOpenOM() 

XCloseOM() 

XDisplayOfOM() 

XLocaleOfOM() 

XSetOMValues() 

XGetOMValues() 

XCreateOC() 

XDestroyOC() 

XOMOfOC() 

XSetOCValues() 

XGetOCValues() 

 

! Resource Management 

XrmInitialize() 

XrmLocaleOfDatabase() 

XrmParseCommand() 

XResourceManagerString() 

XScreenResourceString() 

XrmGetFileDatabase() 

XrmGetStringDatabase() 

XrmMergeDatabases() 

XrmCombineDatabase() 

XrmCombineFileDatabase() 

XrmGetDatabase() 

XrmSetDatabase() 

XrmGetResource() 

XrmEnumerateDatabase() 

XrmPutResource() 

XrmPutStringResource() 

XrmPutLineResource() 

XrmPutFileDatabase() 

XrmDestroyDatabase() 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 23 - 

XrmPermStringToQuark() 

XrmQGetResource() 

XrmQGetSearchList() 

XrmQGetSearchResource() 

XrmQPutResource() 

XrmQPutStringResource() 

XrmQuarkToString() 

XrmStringToBindingQuarkList() 

XrmStringToQuark() 

XrmStringToQuarkList() 

XrmUniqueQuark() 

 

! Inter-Client Communication 

XmbTextListToTextProperty() 

XwcTextListToTextProperty() 

XmbTextPropertyToTextList() 

XwcTextPropertyToTextList() 

XFreeStringList() 

XwcFreeStringList() 

XmbSetWMProperties() 

XSetWMProperties() 

XSetWMName() 

XSetWMIconName() 

! X Input Methods—Internationalized Text Input 

XOpenIM() 

XCloseIM() 

XDisplayOfIM() 

XLocaleOfIM() 

XSetIMValues() 

XGetIMValues() 

XCreateIC() 

XVaCreateNestedList() 

XDestroyIC() 

XIMOfIC() 

XSetICValues() 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 24 - 

XGetICValues() 

XSetICFocus() 

XUnsetICFocus() 

XmbResetIC() 

XwcResetIC() 

XFilterEvent() 

XmbLookupString() 

XwcLookupString() 

XRegisterIMInstantiateCallback() 

XUnregisterIMInstantiateCallback() 

 

Conforming level 2 implementations shall support languages listed in Annex B.  Conforming level 1 

implementations need not to support languages that require complex text layout (the applicable 

languages are marked in the table in Annex B). 

(3) Implementation Examples 

The following implementation example is available for this category. 

XFree86 4.0.1: 
http://www.xfree86.org/ 

(4) Future Direction 

None 

6.2 Graphic Toolkits and X Window Servers 

(1) Scope 

This chapter defines the requirements for graphic toolkits supported on top of the X Window System 

and the X Window System servers. 

(2) Requirements 

! Graphic Toolkits 

There are no requirements on the Graphic Toolkits in terms of internationalization. 

! X Window Servers 

http://www.xfree86.org/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 25 - 

There is no requirement on the X Window Servers in terms of internationalization.Conforming 

implementations shall support X11R6-based X servers and font servers which support outline 

fonts. 

(3) Implementation Examples 

The following implementation examples are available for this category. 

[Graphic Toolkits] 

GTK+: 
http://www.gtk.org/ 

Qt: 
http://www.troll.no/products/qt.html 

[X Window Server which supports outline fonts] 

X-TrueType Server (X-TT): 
http://X-TT.dsl.gr.jp/index.html 

XFree86 4.0.1: 
http://www.xfree86.org/ 

(4) Future Directions 

In a future version of this specification, Unicode, BiDi (bidirectional text), and vertical writing will 

become requirements. 

http://www.gtk.org/
http://www.troll.no/products/qt.html
http://X-TT.dsl.gr.jp/index.html
http://www.xfree86.org/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 26 - 

7. Input Methods 

(1) Scope 

This chapter defines the requirements for text input used by the X Window System and other 

environments.  Such mechanism is needed to support non-Western languages (for example, 

Chinese, Japanese and Korean). 

(2) Requirements 

Conforming implementations shall provide means, i.e., Input Method(s) for user to input characters 

specified in the Annex B: Supported locales and codesets. 

Conforming implementations shall provide X Input Method Server(s) which can connect with Input 

Method Engines of the supported locales.  An Input Method Engine can be implemented as a 

separate process communicating with an X Input Method Server or can be integrated into the X Input 

Method Server. 

Conforming implementations shall support Input Method Engines for the supported locales, that can 

be connected with the above Input Method Server(s). The conforming implementations shall 

document which Input Method Engines are supported by the above X Input Method Server(s) and 

how user can get and install the Engines into the conforming implementations. 

The X Input Method Server(s) should have a capability to switch Input Method Engines dynamically, 

but a conforming implementation may provide multiple Input Method Servers per locale. 

Conforming level 1 implementations should provide an X Input Method Server which supports UTF-8 

encoding and allows user to input whole repertoire of [Unicode 3.0]. 

Conforming level 2 implementations shall provide an X Input Method Server which supports UTF-8 

encoding and allows user to input whole repertoire of [Unicode 3.0]. 

Note: User-friendly input operation is preferable, but it is acceptable to use non-user-friendly input 

operation, such as entering hexadecimal code points, to input not-so-frequently-used characters.  

Also note that the input requirement does not imply that the input characters are displayed 

correctly. 

Conforming implementations may provide X Input Method Server(s) which supports locale specific 

character repertoire and locale specific character encodings. 

Every application that has X Window System based GUI and has a capability to accept character 

input from users should have the interface with the above X Input Method Server(s). 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 27 - 

Conforming implementations should provide means for user to input characters specified in the 

supported locale through Console and TTY device interfaces. 

(3) Implementation Examples 

X Input Method Server (Generic): IIIMF 

X Input Method Servers (Japanese): kinput2, and Xwnmo. 

X Input Method Servers (Chinese): 

Chinput, supporting both GB and Big5 
http://turbolinux.com.cn/~justiny/project-chinput.html 

xcin, supporting both Big5 and GB 
http://xcin.linux.org.tw/ 

X Input Method Servers (Korean): ami, hanIM and byeoroo 

Chinese Console: 

     supports CJK and Big5 display and input with a platform-independent input server 
http://www.redflag-linux.com/news/open.htm 

yh-3.1-opensource.tgz 

(4) Future Direction 

In the next version of this specification, the recommendation of single X Input Method Server which 

can switch Input Method Engines dynamically will become mandatory requirement. 

In the next version of this specification, the recommendation for conforming level 1 implementations 

regarding the X Input Method Server(s) which support UTF-8 encoding will become mandatory 

requirement. 

http://turbolinux.com.cn/~justiny/project-chinput.html
http://xcin.linux.org.tw/
http://www.redflag-linux.com/news/open.htm


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 28 - 

8. Output Methods 

(1) Scope 

This chapter defines the requirements for text output used by the X Window System.  Such 

mechanism is needed to support languages that require complex text rendering. 

(2) Requirements 

Conforming implementations shall provide means, i.e., Output Method(s), for user to output characters 

specified in the Annex B: Supported locales and codesets. 

Conforming implementations shall provide X Output Method interface defined in X11R6 Xlib 

specification chapter 13 as a displaying primitive for X Window System. 

Conforming level 1 implementations should provide multibyte and wide character interface which 

cover the following collections of UCS implementation level 1 defined in [ISO 10646-1]. 

Conforming level 2 implementations shall provide multibyte and wide character interface which cover 

the following collections of UCS implementation level 1 defined in [ISO 10646-1]. 

Note: [ISO 10646-1] defines character blocks for subsetting purpose and are called character 

collections.  Such character collections are used here to indicate minimum displayable subset. 

1 BASIC LATIN 0020-007E 

2 LATIN-1 SUPPLEMENT 00A0-00FF 

3 LATIN EXTENDED-A 0100-017F 

4 LATIN EXTENDED-B 0180-024F 

5 IPA EXTENSIONS 0250-02AF 

8 BASIC GREEK 0370-03CF 

9 GREEK SYMBOLS AND COPTIC 03D0-03FF 

10 CYRILLIC 0400-04FF 

11 ARMENIAN 0530-058F 

27 BASIC GEORGIAN 10D0-10FF 

30 LATIN EXTENDED ADDITIONAL 1E00-1EFF 

31 GREEK EXTENDED 1F00-1FFF 

32 GENERAL PUNCTUATION 2000-206F (only graphical 

characters) 

33 SUPERSCRIPTS AND SUBSCRIPTS 2070-209F 

34 CURRENCY SYMBOLS 20A0-20CF 

 36 LETTERLIKE SYMBOLS 2100-214F 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 29 - 

37 NUMBER FORMS 2150-218F 

38 ARROWS 2190-21FF 

39 MATHEMATICAL OPERATORS 2200-22FF 

40 MISCELLANEOUS TECHNICAL 2300-23FF 

41 CONTROL PICTURES 2400-243F 

42 OPTICAL CHARACTER RECOGNITION 2440-245F 

44 BOX DRAWING 2500-257F 

45 BLOCK ELEMENTS 2580-259F 

46 GEOMETRIC SHAPES 25A0-25FF 

47 MISCELLANEOUS SYMBOLS 2600-26FF 

   

49 CJK SYMBOLS AND PUNCTUATION 3000-303F 

 50 HIRAGANA 3040-309F 

51 KATAKANA 30A0-30FF 

52 BOPOMOFO 3100-312F 

54 CJK MISCELLANEOUS 3190-319F 

55 ENCLOSED CJK LETTERS AND MONTHS 3200-32FF 

56 CJK COMPATIBILITY 3300-33FF 

60 CJK UNIFIED IDEOGRAPHS 4E00-9FFF 

62 CJK COMPATIBILITY IDEOGRAPHS F900-FAFF 

66 CJK COMPATIBILITY FORMS FE30-FE4F 

69 HALFWIDTH AND FULLWIDTH FORMS FF00-FFEF 

71 HANGUL EXTENDED AC00-D7A3 

76 YI SYLLABLES A000-A48F 

77 YI RADICALS A490-A4CF 

81 CJK UNIFIED IDEOGRAPHS EXTENSION A 3400-4DBF 

 

Conforming implementations should provide an X Output Method which supports the encoding 

schemes listed in Annex B. 

Conforming implementations shall provide a terminal emulator on the X Window System that output 

characters in the supported locale. 

Conforming implementations should provide console or tty device interface that output characters in 

the supported locale. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 30 - 

(3) Implementation Examples 

X11R6.4 Xlib, and IIIMXCF 

xterm patches available at: 
http://www.zepler.org/~rwb197/xterm/ 

(4) Future Direction 

None 

http://www.zepler.org/~rwb197/xterm/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 31 - 

9. Network Servers 

(1) Scope 

This chapter defines the requirements for various network servers, such as file sharing servers and 

WWW servers. 

The requirements on the following kinds of servers will be discussed in this section. 

! NetBIOS over TCP/IP 

! AppleTalk 

! Network File System 

! HTTP Server 

 (2) Requirements 

This version of the specification has no requirements for the Network Servers. 

(3) Implementation Examples 

None 

(4) Future Directions 

In a future version of this specification, the requirements on the handling of names, e.g., filename, 

domain name, resource name, and user name, will be specified in this section. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 32 - 

10. Internet Tools 

(1) Scope 

This chapter defines the requirements for Internet client tools, such as WWW browsers and Mail User 

Agents (MUAs). 

(2) Requirements 

Conforming implementations shall make at least one codeset available per locale specified in Annex 

B. 

The supported codeset should be in [IANA-Charset-Registry]. 

Conforming level 2 implementations of Web browsers and mail user agents shall be able to input and 

output whole repertoire of [Unicode 3.0]. 

Note: Character output is restricted as specified in 8. Output Methods. 

(3) Implementation Examples 

The following implementation examples are available for this category. 

Mozilla 
http://www.mozilla.org/ 

mutt 
http://www.mutt.org/ 

(4) Future Direction 

None 

http://www.mozilla.org/
http://www.mutt.org/


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 33 - 

11. Printing 

(1) Scope 

This chapter defines requirements related to printing, such as APIs, utilities and their behavior. 

(2) Requirements 

This version of the specification has no requirements for printing. 

(3) Implementation Examples 

None 

(4) Future Direction 

In a future version of this specification, requirements from the Printing subgroup of the Li18nux 

working group will be provided. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 34 - 

Annex A (Normative): Environment Variables 

Conforming implementations shall provide the following environment variables that are relevant to the 

operation of internationalized interfaces or internationalized commands and utilities. 

LANG 

LC_ALL 

LC_COLLATE 

LC_CTYPE 

LC_MESSAGES 

LC_MONETARY 

LC_NUMERIC 

LC_TIME 

NLSPATH 

The usage and the semantics of these environment variables shall be the same as the description in 

“6.2 Internationalisation Variables” in [XBD5]. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 35 - 

Annex B (Normative): Supported locales and codesets 

Conforming implementations shall provide handling capability of the following locales. 

C 

POSIX 

Conforming implementations shall support the following locales. 

Note 1: The language names come from ISO 639. 

Note 2: To avoid political discussion, the region/country names used here does not strictly follow 

ISO 3166-1. 

af_ZA Afrikaans SOUTH AFRICA [Support of this locale is level 2] 

ar_AE Arabic UNITED ARAB EMIRATES [Output method support is level 2] 

ar_BH  BAHRAIN [Output method support is level 2] 

ar_DZ  ALGERIA [Output method support is level 2] 

ar_EG  EGYPT [Output method support is level 2] 

ar_IN  INDIA [Support of this locale is level 2] 

[Output method support is level 2]  

ar_IQ  IRAQ [Output method support is level 2] 

ar_JO  JORDAN [Output method support is level 2] 

ar_KW  KUWAIT [Output method support is level 2] 

ar_LB  LEBANON [Output method support is level 2] 

ar_LY  LIBYAN ARAB JAMAHIRIYA [Output method support is level 2] 

ar_MA  MOROCCO [Output method support is level 2] 

ar_OM  OMAN [Output method support is level 2] 

ar_QA  QATAR [Output method support is level 2] 

ar_SA  SAUDI ARABIA [Output method support is level 2] 

ar_SD  SUDAN [Output method support is level 2] 

ar_SY  SYRIAN ARAB REPUBLIC [Output method support is level 2] 

ar_TN  TUNISIA [Output method support is level 2] 

ar_YE  YEMEN [Output method support is level 2] 

as_IN Assamese INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

be_BY Byelorussian BELARUS  

bg_BG Bulgarian BULGARIA  

bn_IN Bengali INDIA [Support of this locale is level 2] 

[Output method support is level 2] 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 36 - 

ca_ES Catalan SPAIN  

cs_CZ Czech CZECH REPUBLIC  

da_DK Danish DENMARK  

de_AT German AUSTRIA  

de_BE  BELGIUM [Support of this locale is level 2] 

de_CH  SWITZERLAND  

de_DE  GERMANY  

de_LU  LUXEMBOURG  

el_GR Greek GREECE  

en_AU English AUSTRALIA  

en_BE  BELGIUM  

en_BW  BOTSWANA [Support of this locale is level 2] 

en_CA  CANADA  

en_GB  UNITED KINGDOM  

en_HK  HONG KONG [Support of this locale is level 2] 

en_IE  IRELAND  

en_IN  INDIA [Support of this locale is level 2] 

en_NZ  NEW ZEALAND  

en_PH  PHILIPPINES [Support of this locale is level 2] 

en_SG  SINGAPORE [Support of this locale is level 2] 

en_US  UNITED STATES  

en_ZA  SOUTH AFRICA  

en_ZW  ZIMBABWE [Support of this locale is level 2] 

es_AR Spanish ARGENTINA  

es_BO  BOLIVIA  

es_CL  CHILE  

es_CO  COLOMBIA  

es_CR  COSTA RICA  

es_DO  DOMINICAN REPUBLIC  

es_EC  ECUADOR  

es_ES  SPAIN  

es_GT  GUATEMALA  

es_HN  HONDURAS  

es_MX  MEXICO  

es_NI  NICARAGUA  

es_PA  PANAMA  



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 37 - 

es_PE  PERU  

es_PR  PUERTO RICO  

es_PY  PARAGUAY  

es_SV  REPUBLIC OF EL SALVADOR  

es_UY  URUGUAY  

es_VE  VENEZUELA  

et_EE Estonian ESTONIA  

eu_ES Basque SPAIN [Support of this locale is level 2] 

fa_IN Persian INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

fa_IR  IRAN, ISLAMIC REPULIC OF [Support of this locale is level 2] 

[Output method support is level 2] 

fi_FI Finnish FINLAND  

fo_FO Faroese FAROE ISLANDS  

fr_BE French BELGIUM  

fr_CA  CANADA  

fr_CH  SWITZERLAND  

fr_FR  FRANCE  

fr_LU  LUXEMBOURG  

ga_IE Irish IRELAND  

gl_ES Galician SPAIN [Support of this locale is level 2] 

gu_IN Gujarati INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

gv_GB Manx Gaelic UNITED KINGDOM [Support of this locale is level 2] 

he_IL Hebrew ISRAEL [Output method support is level 2] 

hi_IN Hindi INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

hr_HR Croatian CROATIA  

hu_HU Hungarian HUNGARY  

id_ID Indonesian INDONESIA [Support of this locale is level 2] 

is_IS Icelandic ICELAND  

it_CH Italian SWITZERLAND  

it_IT  ITALY  

ja_JP Japanese JAPAN  

kl_GL Greenlandic GREENLAND  

kn_IN Kannada INDIA [Support of this locale is level 2] 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 38 - 

[Output method support is level 2] 

ko_KR Korean KOREA, REPUBLIC OF  

ks_IN Kashmiri INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

kw_GB Cornish UNITED KINGDOM [Support of this locale is level 2] 

lt_LT Lithuanian LITHUANIA  

lv_LV Latvian, Lettish LATVIA  

mk_MK Macedonian MACEDONIA, THE FORMER 

YUGOSLAV REPUBLIC OF 

 

ml_IN Malayalam INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

ms_MY Malay MALAYSIA [Support of this locale is level 2] 

nl_BE Dutch BELGIUM  

nl_NL  NETHERLANDS  

no_NO Norwegian NORWAY  

or_IN Oriya INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

pa_IN Punjabi INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

pl_PL Polish POLAND  

ps_IN Pashto, Pushto INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

pt_BR Portuguese BRAZIL  

pt_PT  PORTUGAL  

ro_RO Romanian ROMANIA  

ru_RU Russian RUSSIAN FEDERATION  

ru_UA  UKRAINE [Support of this locale is level 2] 

sd_IN Sindhi INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

sh_YU Serbo-Croatian YUGOSLAVIA  

sk_SK Slovak SLOVAKIA  

sl_SI Slovenian SLOVENIA  

sq_AL Albanian ALBANIA  

sr_YU Serbian YUGOSLAVIA  

sv_FI Swedish FINLAND  

sv_SE  SWEDEN  



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 39 - 

ta_IN Tamil INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

te_IN Telugu INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

th_TH Thai THAILAND  

tr_TR Turkish TURKEY  

uk_UA Ukrainian UKRAINE  

ur_IN Urdu INDIA [Support of this locale is level 2] 

[Output method support is level 2] 

vi_VN Vietnamese VIETNAM  

zh_CN Chinese CHINA  

zh_HK  HONG KONG  

zh_SG  SINGAPORE [Support of this locale is level 2] 

zh_TW  TAIWAN  

 

Conforming implementations shall make at least UTF-8 coded character set usable under the above 

locale environments.  Conforming implementations also may make other coded character sets, 

including the following codesets, usable under some of the above locale environments. 

ISO/IEC 8859-1 

ISO/IEC 8859-2 

ISO/IEC 8859-5 

ISO/IEC 8859-7 

ISO/IEC 8859-9 

ISO/IEC 8859-13 

ISO/IEC 8859-15 

 

Korean EUC 

Japanese EUC 

Simplified Chinese EUC 

Traditional Chinese EUC 

   

If an implementation supports non UTF-8 codesets, the implementation shall support codeset 

conversions between the supported codesets and UTF-8 (for both directions) by iconv utility and 

iconv family functions (iconv(), iconv_open() and iconv_close()). 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 40 - 

Annex C (Normative): Publicly Available Specification 

C.1 gettext message handling functions 

NAME 

gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain, 

bindtextdomain, bind_textdomain_codeset — message handling functions 

SYNOPSIS 

#include <libintl.h> 

 

char *gettext(const char *msgid); 

char *dgettext(const char *domainname, const char *msgid); 

char *ngettext(const char *msgid1, const char *msgid2, unsigned long 

int n); 

char *dngettext(const char *domainname, const char *msgid1, const char 

*msgid2, unsigned long int n); 

char *textdomain(const char *domainname); 

char *bindtextdomain(const char *domainname, const char *dirname); 

char *bind_textdomain_codeset(const char *domainname, const char 

*codeset); 

 

#include <libintl.h> 

#include <locale.h> 

 

char *dcgettext(const char *domainname, const char *msgid, int 

category); 

char *dcngettext(const char *domainname, const char *msgid1, const char 

*msgid2, unsigned long int n, int category); 

DESCRIPTION 

The gettext(), dgettext(), and dcgettext() functions attempt to retrieve a target string based on 

the specified msgid argument within the context of a specific domain and the current locale.  

The length of strings returned by gettext(), dgettext(), and dcgettext() is undetermined until 

the function is called.  The msgid argument is a null-terminated string. 

The ngettext(), dngettext() and dcngettext() functions are equivalent to gettext(), dgettext() 

and dcgettext(), respectively, except for the handling of plural forms.  The ngettext(), 

dngettext() and dcngettext() searches for the message string using the msgid1 argument as 

the key, using the argument n to determine the plural form.  If no message catalogs are 

found, msgid1 is returned if n == 1, otherwise msgid2 is returned. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 41 - 

The LANGUAGE environment variable is examined first to determine the message catalogs 

to be used.  The value of the LANGUAGE environment variable is a list of locale names 

separated by colon (:) character.  If the LANGUAGE environment variable is defined, each 

locale name is tried in the specified order and if a message catalog containing the requested 

message is found, the message is returned.  If the LANGUAGE environment variable is 

defined but failed to locate a message catalog, the msgid string will be returned. 

If the LANGUAGE environment variable is not defined, LC_ALL, LC_xxx and LANG 

environment variables are examined to locate the message catalog, following the convention 

used by the setlocale() function. 

The pathname used to locate the message catalog is 

dirname/locale/category/domainname.mo, where dirname is the directory specified by 

bindtextdomain(), locale is a locale name determined by the definition of environment 

variables, category is LC_MESSAGES if gettext(), ngettext(), dgettext() or dngettext() is 

called, otherwise LC_xxx where the name is the same as the locale category name specified 

by the category argument of dcgettext() or dcngettext().  domainname is the name of the 

domain specified by textdomain() or the domainname argument of dgettext(), dngettext(), 

dcgettext() or dcngettext(). 

For gettext() and ngettext(), the domain used is set by the last valid call to textdomain().  If a 

valid call to textdomain() has not been made, the default domain (called messages) is used. 

For dgettext(), dngettext(), dcgettext() and dcngettext(), the domain used is specified by the 

domainname argument.  The domainname argument is equivalent in syntax and meaning 

to the domainname argument to textdomain(), except that the selection of the domain is valid 

only for the duration of the dgettext(), dngettext(), dcgettext() or dcngettext() function call. 

The dcgettext() and dcngettext() functions require additional argument category for retrieving 

message string for other than LC_MESSAGES category.  Available value for the category 

argument are LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, 

LC_NUMERIC and LC_TIME (the call of dcgettext(domainname, msgid, LC_MESSAGES) is 

equivalent to dgettext(domainname, msgid)).  Note that LC_ALL must not be used. 

The textdomain() function sets or queries the name of the current domain of the active 

LC_MESSAGES locale category.  The domainname argument is a null-terminated string 

that can contain only the characters allowed in legal filenames. 

The domainname argument is the unique name of a domain on the system.  If there are 

multiple versions of the same domain on one system, namespace collisions can be avoided 

by using bindtextdomain().  If textdomain() is not called, a default domain is selected.  The 

setting of domain made by the last valid call to textdomain() remains valid across subsequent 

calls to setlocale(), and gettext(). 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 42 - 

The domainname argument is applied to the currently active LC_MESSAGES locale. 

The current setting of the domain can be queried without affecting the current state of the 

domain by calling textdomain() with domainname set to the null pointer.  Calling 

textdomain() with a domainname argument of a null string sets the domain to the default 

domain (messages). 

The bindtextdomain() function binds the path predicate for a message domain domainname 

to the value contained in dirname.  If domainname is a non-empty string and has not been 

bound previously, bindtextdomain() binds domainname with dirname. 

If domainname is a non-empty string and has been bound previously, bindtextdomain() 

replaces the old binding with dirname.  The dirname argument can be an absolute or 

relative pathname being resolved when gettext(), ngettext(), dgettext(), dngettext(), 

dcgettext(), or dcngettext() are called.  If domainname is a null pointer or an empty string, 

bindtextdomain() returns null pointer.  If bindtextdomain() is not called, 

implementation-defined default directory is used. 

The bind_textdomain_codeset() function can be used to specify the output codeset for 

message catalogs for domain domainname.  The codeset argument must be a valid 

codeset name which can be used for the iconv_open() function, or a null pointer. 

If the codeset argument is the null pointer, bind_textdomain_codeset() returns the currently 

selected codeset for the domain with the name domainname.  It returns null pointer if no 

codeset has yet been selected. 

The bind_textdomain_codeset() function can be used several times.  If used multiple times, 

with the same domainname argument, the later call overrides the settings made by the 

earlier one. 

The bind_textdomain_codeset() function returns a pointer to a string containing the name of 

the selected codeset.  The string is allocated internally in the function and must not be 

changed by the user. 

RETURN VALUE 

The gettext(), dgettext() and dcgettext() functions return the message string if the search 

succeeds, otherwise return the msgid string. 

The ngettext(), dngettext() and dcngettext() functions return the message string if the search 

succeeds.  If the search fails, msgid1 is returned if n == 1, otherwise msgid2 is returned. 

The textdomain() function returns the currently selected domain.  If it fails, null pointer will be 

returned. 

The bindtextdomain() function returns the directory pathname currently bound to the domain.  

If it fails, null pointer will be returned. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 43 - 

The bind_textdomain_codeset() function returns the currently selected codeset name.  It 

returns null pointer if no codeset has yet been selected. 

ERRORS 

The gettext(), dgettext(), dcgettext(), ngettext(), dngettext() and dcngettext() will not modify 

the external variable errno. 

The textdomain(), bindtextdomain() and bind_textdomain_codeset() functions may fail if: 

[ENOMEM] 

Insufficient memory available. 

EXAMPLES 

None. 

APPLICATION USAGE 

Application programs shall not modify strings returned by the functions. 

The dcgettext() function can be used, for example, to retrieve locale-specific string for time 

format which depends on LC_TIME category, not LC_MESSAGES category.  Because the 

locale setting of LC_TIME and LC_MESSAGES can be different, using gettext() in such a 

case may cause unexpected result. 

Specifying relative pathname to the bindtextdomain() function may cause trouble and should 

be avoided.  Since the message catalogs are always searched for the directory relative to 

the application program’s current working directory, if the program calls the chdir() function,  

the directory searched for will also be changed. 

On Solaris systems, the domain names that begin with the string SYS_ are reserved for 

system use.  On glibc 2.2, the name libc is used for libc messages.  Such domain names 

shall not be used by application programs. 

FUTURE DIRECTIONS 

None. 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 44 - 

C.2 <libintl.h> header 

NAME 

 libintl.h — internationalized message handling 

SYNOPSIS 

 #include <libintl.h> 

DESCRIPTION 

The following are declared as functions and may also be defined as macros.  Function 

prototypes must be provided for use with an ISO C compiler. 

 
char *gettext(const char *msgid); 

char *dgettext(const char *domainname, const char *msgid); 

char *ngettext(const char *msgid1, const char *msgid2, unsigned long 

int n); 

char *dngettext(const char *domainname, const char *msgid1, const char 

*msgid2, unsigned long int n); 

char *textdomain(const char *domainname); 

char *bindtextdomain(const char *domainname, const char *dirname); 

char *bind_textdomain_codeset(const char *domainname, const char 

*codeset); 

char *dcgettext(const char *domainname, const char *msgid, int 

category); 

char *dcngettext(const char *domainname, const char *msgid1, const char 

*msgid2, unsigned long int n, int category); 

 

APPLICATION USAGE 

None. 

FUTURE DIRECTIONS 

None. 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 45 - 

C.3 msgfmt utility 

NAME 

 msgfmt — create a message object from a message file 

SYNOPSIS 

 msgfmt [ options ] filename.po ... 

DESCRIPTION 

msgfmt creates message object files from portable object files (filename.po), without 

changing the portable object files. 

The .po file contains messages displayed to users by system utilities or by application 

programs.  .po files can be edited, and the messages in them can be rewritten in any 

language supported by the system. 

If input file is -, standard input is read. 

The xgettext utility can be used to create .po files from script or programs. 

msgfmt interprets data as characters according to the current setting of the LC_CTYPE 

locale category. 

OPTIONS 

-D directory 

--directory=directory 

Add directory to list for input files search. 
-f 

--use-fuzzy 

Use fuzzy entries in output.  If this option is not specified, fuzzy entries are not 

included into the output. 

-o output-file 

--output-file=output-file 

Specify output file name as output-file.  All domain directives and duplicate 

msgids in the .po file are ignored.  If output-file is -, output is written to 

standard output. 
--strict 

Direct the utility to work strictly following the UniForum/Sun implementation.  

Currently this only affects the naming of the output file.  If this option is not given the 

name of the output file is the same as the domain name.  If the strict UniForum mode 

is enabled the suffix .mo is added to the file name if it is not already present. 

-v 

--verbose 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 46 - 

Detect and diagnose input file anomalies which might represent translation errors.  

The msgid and msgstr strings are studied and compared.  It is considered 

abnormal that one string starts or ends with a newline while the other does not. 

Also, if the string represents a format string used in a printf-like function both strings 

should have the same number of % format specifiers, with matching types.  If the flag 

c-format or possible-c-format appears in the special comment #, for this 

entry a check is performed.  For example, the check will diagnose using %.*s 

against %s, or %d against %s, or %d against %x.  It can even handle positional 

parameters. 

OPERANDS 

The filename.po operands are treated as portable object files.  The format of portable object 

files is defined in EXTENDED DESCRIPTION. 

STDIN 

The standard input is not used unless a filename.po operand is specified as “-“. 

INPUT FILES 

Input files are text files. 

ENVIRONMENT VARIABLES 

LANGUAGE 

Specifies one or more locale names.  See C.1 gettext message handling functions 

for more information. 

LANG 

Specifies default locale name. 

LC_ALL 

Specifies locale name for all categories.  If defined, overrides LANG, LC_CTYPE 

and LC_MESSAGES. 

LC_CTYPE 

Specifies locale name for character handling. 

LC_MESSAGES 

Specifies messaging locale, and if present overrides LANG for messages. 

STDOUT 

The standard output is not used unless the option-argument of the -o option is specified as 

-. 

STDERR 

The standard error is used only for diagnostic messages. 

OUTPUT FILES 

The format of output files are not specified in this specification. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 47 - 

EXTENDED DESCRIPTION 

The format of portable object files (.po files) is defined as follows.  Each .po file contains 

one or more lines, with each line containing either a comment or a statement.  Comments 

start the line with a hash mark (#) and end with the newline character.  All comments and 

empty lines are ignored.  The format of a statement is: 

directive value 

Each directive starts at the beginning of the line and is separated from value by white 

space (such as one or more space or tab characters).  value consists of one or more 

quoted strings separated by white space.  If two or more strings are specified as value, 

they are normalized into single string using the string normalization syntax the same as the 

ISO C language.  Use any of the following types of directives: 

domain domainname 

msgid message_identifier 

msgid_plural untranslated_string_plural 

msgstr message_string 

msgstr[n] message_string 

The behavior of the domain directive is affected by the options used.  See OPTIONS for the 

behavior when the -o option is specified.  If the -o option is not specified, the behavior of 

the domain directive is as follows: 

# All msgids from the beginning of each .po file to the first domain directive are put into 

a default message object file, messages (or messages.mo if --strict option is 

specified). 

# When msgfmt encounters a domain domainname directive in the .po file, all 

following msgids until the next domain directive are put into the message object file 

domainname (or domainname.mo if --strict option is specified). 

# Duplicate msgids are defined in the scope of each domain.  That is, a msgid is 

considered a duplicate only if the identical msgid exists in the same domain. 

# All duplicate msgids are ignored. 

The msgid directive specifies the value of a message identifier associated with the directive 

that follows it.  The msgid_plural directive specifies the plural form message specified to 

the plural message handling functions ngettext(), dngettext() or dcngettext().  The 

message_identifier string identifies a target string to be used at retrieval time.  Each 

statement containing a msgid directive must be followed by a statement containing a 

msgstr directive or msgstr[n] directives. 

The msgstr directive specifies the target string associated with the message_identifier 

string declared in the immediately preceding msgid directive. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 48 - 

The msgstr[n] (where n = 0, 1, 2, ...) directive specifies the target string to be used 

with plural form handling functions ngettext(), dngettext() and dcngettext(). 

Message strings can contain the escape sequences \n for newline, \t for tab, \v for vertical 

tab, \b for backspace, \r for carriage return, \f for formfeed, \\ for backslash, \" for 

double quote, \ddd for octal bit pattern, and \xHH for hexadecimal bit pattern. 

Comments should be in one of the following formats: 

#  translator-comments 

#. automatic-comments 

#: reference... 

#, flag 

The comments that starts with #. and #: are automatically generated by xgettext utility.  

The #: comments indicate the location of the msgid string in the source files in 

filename:line format.  The #. comments are generated when -c option of the  

xgettext utility is specified.  These comments are informative only and silently ignored by 

the msgfmt utility. 

The #, comments requires one or more flags separated by comma (,) character.  The 

following flags can be specified: 
fuzzy 

This flag can be generated by the msgmerge utility or can be inserted by the translator.  

It shows that the msgstr string might not be a correct translation (anymore).  Only 

the translator can judge if the translation requires further modification, or is acceptable 

as is.  Once satisfied with the translation, the translator then removes this fuzzy flag.  

The msgmerge programs inserts this when it combined the msgid and msgstr 

entries after fuzzy search only. 

If this flag is specified, the msgfmt utility will not generate the entry for the immediately 

following msgid in the output message catalog. 

c-format 

no-c-format 

The flags are automatically added by the xgettext utility and they should not be 

added manually.  The c-format flag indicates that the msgid string is used as 

format string by printf-like functions.  In case the c-format flag is given for a string 

the msgfmt utility does some more tests to check to validity of the translation.   

 

The msgid entry with empty string ("") is called the header entry and treated specially.  If 

the message string for the header entry contains nplurals=value, the value indicates the 

number of plural forms.  For example, if nplurals=4, there are 4 plural forms.  If 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 49 - 

nplurals is defined, there should be plural=expression in the same line, separated by 

a semicolon (;) character.  The expression is a C language expression to determine 

which version of msgstr[n] to be used based on the value of n, the last argument of 

ngettext(), dngettext() or dcngettext().  For example: 

nplurals=2; plural=n == 1 ? 0 : 1 

indicates that there are 2 plural forms in the language; msgstr[0] is used if n == 1, 

otherwise msgstr[1] is used.  Another example: 

nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2 

indicates that there are 3 plural forms in the language; msgstr[0] is used if n == 1, 

msgstr[1] is used if n == 2, otherwise msgstr[2] is used. 

If the header entry contains charset=codeset string, the codeset is used to indicate the 

codeset to be used to encode the message strings.  If the output string’s codeset is different 

from the message string’s codeset, codeset conversion from the message string’s codeset to 

the output string’s codeset will be performed upon the call of gettext(), dgettext(), dcgettext(), 

ngettext(), dngettext() and dcngettext().  The output string's codeset is determined by the 

current locale's codeset (the returned value of nl_langinfo(CODESET)) by default, and can 

be changed by the call of bind_textdomain_codeset(). 

EXIT STATUS 

The following exit values are returned:  
0 Successful completion. 
>0 An error occurred. 

APPLICATION USAGE 

Neither msgfmt nor any gettext() routine imposes a limit on the total length of a message.  

Installing message catalogs under the C locale is pointless, since they are ignored for the 

sake of efficiency. 

EXAMPLES 

Example 1: Examples of creating message objects from message files. 

In this example module1.po and module2.po are portable message objects files. 

 example% cat module1.po 

 # default domain "messages" 

 msgid "msg 1" 

 msgstr "msg 1 translation" 

 # 

 domain "help_domain" 

 msgid "help 2" 

 msgstr "help 2 translation" 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 50 - 

 # 

 domain "error_domain" 

 msgid "error 3" 

 msgstr "error 3 translation" 

 example% cat module2.po 

 # default domain "messages" 

 msgid "mesg 4" 

 msgstr "mesg 4 translation" 

 # 

 domain "error_domain" 

 msgid "error 5" 

 msgstr "error 5 translation" 

 # 

 domain "window_domain" 

 msgid "window 6" 

 msgstr "window 6 translation" 

The following command will produce the output files, messages, help_domain, and 

error_domain. 

 example% msgfmt module1.po 

The following command will produce the output files, messages, help_domain, 

error_domain, and window_domain. 

 example% msgfmt module1.po module2.po 

The following example will produce the output file hello.mo. 

 example% msgfmt -o hello.mo module1.po module2.po 

FUTURE DIRECTIONS 

None. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 51 - 

C.4 xgettext utility 

NAME 

xgettext — extract gettext call strings from C programs 

SYNOPSIS 

xgettext [ options ] filename ... 

DESCRIPTION 

The xgettext utility is used to automate the creation of portable message files (.po).  

A .po file contains copies of the C language strings that are found in ISO C source code in 

filename or the standard input if - is specified on the command line.  The .po file can be 

used as input to the msgfmt utility, which produces a binary form of the message file that can 

be used by application during run-time. 

xgettext writes msgid strings from gettext() calls in filename to the default output file 

messages.po.  The default output file name can be changed by -d option.  msgid strings 

in dgettext() calls are written to the output file domainname.po where domainname is the 

first parameter to the dgettext() call. 

By default, xgettext creates a .po file in the current working directory, and each entry is in 

the same order the strings are extracted from filenames.  When the -p option is specified, 

the .po file is created in the pathname directory.  An existing .po file is overwritten. 

Duplicate msgids are written to the .po file as comment lines.  When the -s option is 

specified, the .po is sorted by the msgid string, and all duplicated msgids are removed.  

All msgstr directives in the .po file are empty unless the -m option is used. 

OPTIONS 

-a 

--extract-all 

Extract all strings, not just those found in gettext() and dgettext() calls.  Only one .po 

file is created. 

-c[comment-tag] 

--add-comments[=comment-tag] 

The comment block beginning with comment-tag as the first token of the comment 

block is added to the output .po file as # delimited comments.  For multiple domains, 

xgettext directs comments and messages to the prevailing text domain. 

-C 

--c++ 

Recognize C++ style comments. 

-d default-domain 

--default-domain=default-domain 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 52 - 

Rename default output file from messages.po to default-domain.po. 

The special domain name - means to write the output to the standard output. 

-D directory 

--directory=directory 

Change to directory before beginning to search and scan source files.  The 

resulting .po file will be written relative to the original directory, though. 

--debug 

Use the flags c-format and possible-c-format to show who was responsible 

for marking a message as a format string.  The later form is used if the xgettext 

utility decided, the format form is used if the programmer prescribed it. 

By default only the c-format form is used.  The translator should not have to care 

about these details. 
-e 

--no-escape 

Do not use C escapes in output (default). 
-E 

--escape 

Use C escapes in output if non-ASCII characters are used. 

-f file 

--files-from=file 

Read the names of the input files from file instead of getting them from the 

command line.  If - is specified as file, the standard input is read. 

-F 

--sort-by-file 

Sort output by file location. 
--force-po 

Always write output file even if no message is defined. 
-i 

--indent 

Write the .po file using indented style. 

-j 

--join-existing 

Join messages with existing message files.  If a .po file does not exist, it is created.  

If a .po file does exist, new messages are appended.  Any duplicate msgids are 

commented out in the resulting .po file.  Domain directives in the existing .po file are 

ignored.  Results not guaranteed if the existing message file has been edited. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 53 - 

-k[keywordspec] 

--keyword[=keywordspec] 

Specify additional keyword to be looked for (without keywordspec means not to use 

default keywords). 

If keywordspec is a C identifier id, xgettext looks for strings in the first argument 

of each call to the function or macro id.  If keywordspec is of the form id:argnum, 

xgettext looks for string in the argnumth argument of the call.  If keywordspec is 

of the form id:argnum1,argnum2, xgettext looks for strings in the argnum1st 

argument and in the argnum2nd argument of the call, and treats them as 

singular/plural variants for a message with plural handling. 

The default keywords, which are always looked for if not explicitly disabled, are 

gettext, dgettext:2, dcgettext:2, ngettext:1,2, dngettext:2,3, 

dcngettext:2,3 and gettext_noop. 

-L name 

--language=name 

Recognize the specified language.  Valid values are C, C++, and PO.  Otherwise the 

language is guessed from file extension. 

-m[prefix] 

--msgstr-prefix[=prefix] 

Fill in the msgstr with prefix.  This is useful for debugging purposes.  To make 

msgstr identical to msgid, use an empty string ("") for prefix. 

-M[suffix] 

--msgstr-suffix[=suffix] 

Fill in the msgstr with suffix.  This is useful for debugging purposes. 

-n 

--add-location 

Add comment lines to the output file indicating file name and line number in the source 

file where each extracted string is encountered (default).  These lines appear before 

each msgid in the following format: 

#: filename:line 

--no-location 

Do not write #: filename:line lines. 

-o file 

--output=file 

Write output to the specified file. 

-p pathname 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 54 - 

--output-dir=pathname 

Specify the directory where the output files will be placed.  This option overrides the 

current working directory. 
-s 

--sort-output 

Generate output sorted by msgids with all duplicate msgids removed. 

--strict 

Write out strict UniForum conforming PO file. 
-T 

--trigraphs 

Understand ISO C trigraphs for input. 

-w number 

--width=number 

Limit the output lines to number columns. 

-x exclude-file 

--exclude-file=exclude-file 

Specify a .po file that contains a list of msgids that are not to be extracted from the 

input files.  The format of exclude-file is identical to the .po file.  However, only 

the msgid directive line in exclude-file is used.  All other lines are simply ignored.  

The -x option can only be used with the -a option. 

OPERANDS 

The operands are pathnames to the C or C++ language source files. 

STDIN 

The standard input is not used unless a filename operand is specified as -. 

INPUT FILES 

The input files are text files. 

ENVIRONMENT VARIABLES 

LANGUAGE 

Specifies one or more locale names.  See C.1 gettext message handling functions 

for more information. 

LANG 

Specifies default locale name. 

LC_ALL 

Specifies locale name for all categories.  If defined, overrides LANG, LC_CTYPE 

and LC_MESSAGES. 

LC_CTYPE 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 55 - 

Specifies locale name for character handling. 

LC_MESSAGES 

Specifies messaging locale, and if present overrides LANG for messages. 

STDOUT 

The standard output is not used unless the option-argument to the -o option is specified as 

-. 

STDERR 

The standard error is used only for diagnostic messages. 

OUTPUT FILES 

The output files are text files. 

EXTENDED DESCRIPTION 

None. 

EXIT STATUS 

The following exit values are returned: 
0 Successful completion. 
>0 An error occurred. 

APPLICATION USAGE  

xgettext is not able to extract cast strings, for example ISO C casts of literal strings to 

(const char *).  This is unnecessary anyway, since the prototypes in <libintl.h> 

already specify this type. 

EXAMPLES  

None. 

FUTURE DIRECTIONS  

None. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 56 - 

C.5 msgmerge utility 

NAME 

msgmerge — merge two portable object files 

SYNOPSIS 

msgmerge [ options ] def.po ref.po 

DESCRIPTION 

The msgmerge utility merges two UniForum style .po files together.  The def.po file is an 

existing PO file with the old translations which will be taken over to the newly created file as 

long as they still match; comments will be preserved, but extract comments and file positions 

will be discarded. 

The ref.po file is the last created PO file (generally by xgettext), any translations or 

comments in the file will be discarded, however dot comments (#. comments) and file 

positions (#: comments) will be preserved.  Where an exact match cannot be found, fuzzy 

matching is used to produce better results.  The results are written to the standard output 

unless an output file is specified. 

OPTIONS 

-D directory 

--directory=directory 

Change to directory before beginning to search and scan source files.  The 

resulting .po file will be written relative to the original directory, though. 

-e 

--no-escape 

Do not use C escapes in output (default). 
-E 

--escape 

Use C escapes in output if non-ASCII characters are used. 
--force-po 

Always write output file even if no message is defined. 
-i 

--indent 

Write the .po file using indented style. 

-o file 

--output-file=file 

Write output to the specified file. 
--add-location 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 57 - 

Add comment lines to the output file indicating file name and line number in the source 

file where each extracted string is encountered (default).  These lines appear before 

each msgid in the following format: 

#: filename:line ... 

--no-location 

Do not write #: filename:line lines. 

--strict 

Write out strict UniForum conforming PO file. 

-w number 

--width=number 

Limit the output lines to number columns. 

OPERANDS 

The following operands are supported: 

def.po 

The def.po operand is a pathname of the message portable object file that may 

have translated text. 

ref.po 

The ref.po operand is a pathname of the message portable object file newly 

generated by the xgettext utility with modified program source files.  This file may 

contain newly introduced message strings or modified message strings, and the 

msgmerge utility will detect such changes and merge the changes to def.po. 

STDIN 

The standard input is not used unless def.po or ref.po operand is specified as -. 

INPUT FILES 

The input files are text files. 

ENVIRONMENT VARIABLES 

LANGUAGE 

Specifies one or more locale names.  See C.1 gettext message handling functions 

for more information. 

LANG 

Specifies default locale name. 

LC_ALL 

Specifies locale name for all categories.  If defined, overrides LANG, LC_CTYPE 

and LC_MESSAGES. 

LC_CTYPE 

Specifies locale name for character handling. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 58 - 

LC_MESSAGES 

Specifies messaging locale, and if present overrides LANG for messages. 

STDOUT 

The standard output is used to write merged result unless -o option is specified. 

STDERR 

The standard error is used only for diagnostic messages. 

OUTPUT FILES 

The output files are text files. 

EXTENDED DESCRIPTION 

None. 

EXIT STATUS 

The following exit values are returned: 
0 Successful completion. 
>0 An error occurred. 

APPLICATION USAGE 

None. 

EXAMPLES 

None. 

FUTURE DIRECTIONS 

None. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 59 - 

C.6 gettext utility 

NAME 

gettext — retrieve text string from message database 

SYNOPSIS 

gettext [ options ] [ textdomain ] msgid 

gettext -s [ options ] msgid ... 

DESCRIPTION 

The gettext utility retrieves a translated text string corresponding to string msgid from a 

message object generated with msgfmt utility. 

The message object name is derived from the optional argument textdomain if present, 

otherwise from the TEXTDOMAIN environment.  If no domain is specified, or if a 

corresponding string cannot be found, gettext prints msgid. 

Ordinarily gettext looks for its message object in dirname/lang/LC_MESSAGES where 

dirname is the implementation-defined default directory and lang is the locale name.  If 

present, the TEXTDOMAINDIR environment variable replaces the dirname. 

This utility interprets C escape sequences such as \t for tab.  Use \\ to print a backslash.  

To produce a message on a line of its own, either put a \n at the end of msgid, or use this 

command in conjunction with printf utility. 

When used with the -s option the utility behaves like the echo utility.  But it does not 

simply copy its arguments to standard output.  Instead those messages found in the 

selected catalog are translated. 

OPTIONS 

-d domainname 

--domain=domainname 

Retrieve translated messages from domainname. 

-e 

Enable expansion of some escape sequences. 
-n 

Suppress trailing newline. 

OPERANDS 

The following operands are supported: 

textdomain 

A domain name used to retrieve the messages. 

msgid 

A key to retrieve the localized message. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 60 - 

STDIN 

Standard input is not used. 

INPUT FILES 

None. 

ENVIRONMENT VARIABLES 

LANGUAGE 

Specifies one or more locale names.  See C.1 gettext message handling functions 

for more information. 

LANG 

Specifies locale name. 

LC_MESSAGES 

Specifies messaging locale, and if present overrides LANG for messages. 

TEXTDOMAIN 

Specifies the text domain name, which is identical to the message object filename 

without .mo suffix. 

TEXTDOMAINDIR 

Specifies the pathname to the message database, and if present replaces the 

implementation-defined default directory. 

STDOUT 

All messages are written to the standard output. 

STDERR 

The standard error is used only for diagnostic messages. 

OUTPUT FILES 

None. 

EXTENDED DESCRIPTION 

None. 

EXIT STATUS 

The following exit values are returned: 
0 Successful completion. 
>0 An error occurred. 

APPLICATION USAGE 

None. 

EXAMPLES 

None. 

FUTURE DIRECTIONS 

None. 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 61 - 

Annex D (Informative): Base Components 

(This Annex is informative only and does not contain any requirements to the conforming 

implementations.) 

Scope 

One of the goals of LI18NUX 2000 specification is maximize internationalized application portability 

and interpretability among the conforming implementations.  However, application may depend on 

functions and utilities that are not described in the main sections of LI18NUX 2000.  Therefore, this 

annex describes recommended functions and utilities that all of conforming implementation should 

provide. 

Since scope of the LI18NUX 2000 is limited within internationalization functionality, and the functions 

and utilities included in this annex may not necessarily be internationalized, this annex is provided just 

as informative, and does not contain any requirement for conformity. 

Future version of this annex may/will refer to Linux Standard Base (LSB) specification when the LSB 

specification becomes available. 

A) Conforming implementations are assumed to provide the following interfaces and utilities besides 

internationalized interfaces and utilities in chapters 3-11. 

** System Interfaces: 

Conforming implementations are assumed to provide the C functions and headers which are defined 

in [POSIX.1]. 

** Commands and Utilities: 

[A] ar, at, arch, arp 

[B] basename, batch, bzip2, bunzip2, bzip2recover 

[C] cat, cd, chgrp, chmod, chown, cmp, col, comm, compress, cp, cpio, csplit, cut, chroot 

[D] date, dd, df, diff, dirname, du, diff3, domainname 

[E] echo, expand, expr 

[F] false, file, fuser, ftp 

[G] getopts, gzip, gunzip, getconf 

[H] head, hostname, hash 

[I] id, ipcrm, ipcs, ifconfig, imake 

[J] join 

[K] kill, killall 

[L] ln, logger, logname, ls, ldd 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 62 - 

[M] make, mkdir, mkfifo, mv, mount, m4, mailx, mkswap, mkfs 

[N] nice, nl, nohup, netstat, nslookup, newgrp, nm 

[O] od 

[P] paste, patch, pathchk, printf, ps, pwd, ping 

[R] read, renice, rm, rmdir, reboot 

[S] sleep, split, strings, strip, sum, shar, su, shutdown 

[T] tail, tar, tee, test, time, touch, tr, true, tty, type, telnet, talk, tput, tsort 

[U] umask, uname, uncompress, unexpand, uniq, uudecode, uuencode, umount 

[W] wait, wc, who 

[X] xargs 

[Z] zcat 

 

B) Furthermore, conforming implementations should support the following utilities and protocols. 

** Commands and Utilities: 

[A] alias 

[B] bc, bg 

[C] cal, crontab, clear, cancel, cflow, cksum, command, ctags 

[D] fc 

[E] env 

[F] fg 

[J] jobs 

[L] lex, lpr, lpq, lprm, lpc, less 

[M] more, mesg 

[P] passwd, pr 

[S] stty 

[T] tclsh 

[U] unalias, ulimit  

[W] wish, write 

[Y] yacc 

** Protocols: 

Conforming implementations are assumed to support the protocols which are defined in the following 

RFC specifications (http://www.rfc-editor.org/): 

! ICMP (Internet Control Message Protocol): RFCs 792 and 950 

! SMTP (Simple Mail Transfer Protocol): RFCs 821, 822, 1123 and 2045-2049 

http://www.rfc-editor.org/):


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 63 - 

! FTP (File Transfer Protocol): RFCs 959, 2228 and 2640 

! TELNET: RFCs 854, 855, 856, 857, 858, 859, 860 and 861 

! DNS (Domain Naming System): RFCs 974, 1034, 1035, 1101, 1183, 1706, 

1982, 1995, 1996, 2136, 2137, 2181, 2308 and 2535 

! LPD (Line Printer Daemon Protocol): RFC 1179 

! POP3 (Post Office Protocol - Version 3): RFCs 1939, 1957 and 2449 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 64 - 

Annex E (Informative): Informative References 

(This Annex is informative only and does not contain any requirements to the conforming 

implementations.) 

[XNS5.2] 

The Single UNIX Specification, Version 2 

Networking Services, Issue 5.2 

(The Open Group CAE Specification C808) 

[Unicode Normalization] 

Unicode Technical Report #15: Unicode Normalization Forms, Revision 18.0 
http://www.unicode.org/unicode/reports/tr15/tr15-18.html 

(included in “The Unicode Standard, Version 3.0”) 

[Line Breaking Properties] 

Unicode Technical Report #14: Line Breaking Properties, Version 6.0 
http://www.unicode.org/unicode/reports/tr14/tr14-6.html 

[Unicode Newline Guidelines] 

Unicode Technical Report #13: Unicode Newline Guidelines, Version 5.0 
http://www.unicode.org/unicode/reports/tr13/tr13-5.html 

[East Asian Width] 

Unicode Technical Report #11: East Asian Width, Version 5.0 
http://www.unicode.org/unicode/reports/tr11/tr11-5.html 

[Bidirectional Algorithm] 

Unicode Technical Report #9: The Bidirectional Algorithm, Version 6.0 
http://www.unicode.org/unicode/reports/tr9/tr9-6.html 

[ISO 639-2] 

ISO 639-2:1998 Codes for the representation of names of languages — Part 2: Alpha-3 code 

[ISO 3166-2] 

ISO 3166-2:1998 Codes for the representation of names of countries and their subdivisions 

— Part 2: Country subdivision code 

http://www.unicode.org/unicode/reports/tr15/tr15-18.html
http://www.unicode.org/unicode/reports/tr14/tr14-6.html
http://www.unicode.org/unicode/reports/tr13/tr13-5.html
http://www.unicode.org/unicode/reports/tr11/tr11-5.html
http://www.unicode.org/unicode/reports/tr9/tr9-6.html


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 65 - 

[ISO 3166-3] 

ISO 3166-3:1999 Codes for the representation of names of countries and their subdivisions 

— Part 3: Code for formerly used names of countries 

 

[ISO 2022] 

ISO/IEC 2022:1994 Information technology — Character code structure and extension 

techniques 

ISO/IEC 2022:1994/Cor 1:1999 

[ISO 6429] 

ISO/IEC 6429:1992 Information technology — Control functions for coded character sets 

[ISO 646] 

ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information 

interchange 

[ISO 6937] 

ISO/IEC 6937:1994 Information technology — Coded graphic character set for text 

communication — Latin alphabet 

[ISO 8859-3] 

ISO/IEC 8859-3:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 3: Latin alphabet No. 3 

[ISO 8859-4] 

ISO/IEC 8859-4:1998 Information technology — 8-bit single-byte coded graphic character 

sets — Part 4: Latin alphabet No. 4 

[ISO 8859-6] 

ISO/IEC 8859-6:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 6: Latin/Arabic alphabet 

[ISO 8859-8] 

ISO/IEC 8859-8:1999 Information technology — 8-bit single-byte coded graphic character 

sets — Part 8: Latin/Hebrew alphabet 

[ISO 8859-10] 

ISO/IEC 8859-10:1998 Information technology — 8-bit single-byte coded graphic character 

sets — Part 10: Latin alphabet No. 6 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 66 - 

[ISO 8859-14] 

ISO/IEC 8859-14:1998 Information technology — 8-bit single-byte coded graphic character 

sets — Part 14: Latin alphabet No. 8 (Celtic) 

[Tcl/Tk 8.3] 

Tcl/Tk 8.3 (February 10, 2000) 
http://dev.scriptics.com/software/tcltk/8.3.html 

[PPP-I18N] 

RFC 2484 PPP LCP Internationalization Configuration Option. G. Zorn.  January 1999. 

(Format: TXT=8330 bytes) (Updates RFC2284, RFC1994, RFC1570) (Status: PROPOSED 

STANDARD) 

[IETF-Charset] 

RFC 2277 IETF Policy on Character Sets and Languages. H. Alvestrand.  January 1998. 

(Format: TXT=16622 bytes) (Also BCP0018) (Status: BEST CURRENT PRACTICE) 

[IANA-Charset] 

RFC 2278 IANA Charset Registration Procedures. N. Freed, J. Postel.  January 1998. 

(Format: TXT=18881 bytes) (Also BCP0019) (Status: BEST CURRENT PRACTICE) 

[MIME-Parameter] 

RFC 2231 MIME Parameter Value and Encoded Word Extensions: Character Sets, 

Languages, and Continuations. N. Freed, K. Moore. November 1997.  (Format: TXT=19280 

bytes) (Obsoletes RFC2184) (Updates RFC2045, RFC2047 RFC2183) (Status: 

PROPOSED STANDARD) 

[RFC 2130] 

RFC 2130 The Report of the IAB Character Set Workshop held 29 February - 1 March, 1996. 

C. Weider, C. Preston, K. Simonsen, H. Alvestrand, R. Atkinson, M. Crispin, P. Svanberg. 

April 1997. (Format: TXT=63443 bytes) (Status: INFORMATIONAL) 

[HTML 4.01] 

HTML 4.01 Specification 

24 December 1999. Dave Raggett, Arnaud Le Hors, Ian Jacobs 
http://www.w3.org/TR/html401 

This specification is the latest version of HTML 4. It supersedes the HTML 4.0 

Recommendation first published as HTML 4.0 on 18 December 1997 and revised as HTML 

4.0 on 24 April 1998. 

http://dev.scriptics.com/software/tcltk/8.3.html
http://www.w3.org/TR/html401


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 67 - 

[MIME] 

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet 

Message Bodies. N. Freed & N. Borenstein. November 1996.  (Format: TXT=72932 bytes) 

(Obsoletes RFC1521, RFC1522, RFC1590) 

(Updated by RFC2184, RFC2231) (Status: DRAFT STANDARD) 

 

RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed & 

N. Borenstein. November 1996. (Format: TXT=105854 bytes) (Obsoletes RFC1521, 

RFC1522, RFC1590) (Updated by RFC2646) (Status: DRAFT STANDARD) 

 

RFC 2047 MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header 

Extensions for Non-ASCII Text. K. Moore. November 1996.  (Format: TXT=33262 bytes) 

(Obsoletes RFC1521, RFC1522, RFC1590) 

(Updated by RFC2184, RFC2231) (Status: DRAFT STANDARD) 

 

RFC 2048 Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures. 

N. Freed, J. Klensin & J. Postel. November 1996. (Format: TXT=45033 bytes) (Obsoletes 

RFC1521, RFC1522, RFC1590) (Also BCP0013) (Status: BEST CURRENT PRACTICE) 

 

RFC 2049 Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria 

and Examples. N. Freed & N. Borenstein. November 1996. (Format: TXT=51207 bytes) 

(Obsoletes RFC1521, RFC1522, RFC1590) (Status: DRAFT STANDARD) 

[LANG-TAG] 

RFC 1766 Tags for the Identification of Languages. H. Alvestrand. March 1995. (Format: 

TXT=16966 bytes) (Status: PROPOSED STANDARD) 

[MIME-BIDI] 

RFC 1556 Handling of Bi-directional Texts in MIME. H. Nussbacher. December 1993. 

(Format: TXT=5602 bytes) (Status: INFORMATIONAL) 

[Unicode-Language-tag] 

RFC 2482 Language Tagging in Unicode Plain Text. K. Whistler, G. Adams. 

January 1999. (Format: TXT=27800 bytes) (Status: INFORMATIONAL) 

[UTF-16] 

RFC 2781 UTF-16, an encoding of ISO 10646. P. Hoffman, F. Yergeau. 

February 2000. (Format: TXT=29870 bytes) (Status: INFORMATIONAL) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 68 - 

[KOI8-U] 

RFC 2319 Ukrainian Character Set KOI8-U. KOI8-U Working Group. April 1998. 

(Format: TXT=18042 bytes) (Status: INFORMATIONAL) 

[UTF-8] 

RFC 2279 UTF-8, a transformation format of ISO 10646. F. Yergeau. January 1998. 

(Format: TXT=21634 bytes) (Obsoletes RFC2044) (Status: DRAFT STANDARD) 

[ISO-2022-JP-1] 

RFC 2237 Japanese Character Encoding for Internet Messages. K. Tamaru. 

November 1997. (Format: TXT=11628 bytes) (Status: INFORMATIONAL) 

[UTF-7] 

RFC 2152 UTF-7 A Mail-Safe Transformation Format of Unicode. D. Goldsmith, M. Davis. 

May 1997. (Format: TXT=28065 bytes) (Obsoletes RFC1642) (Status: INFORMATIONAL) 

[ISO-8859-7] 

RFC 1947 Greek Character Encoding for Electronic Mail Messages. D. Spinellis. May 1996. 

(Format: TXT=14428 bytes) (Status: INFORMATIONAL) 

[ISO-2022-CN] 

RFC 1922 Chinese Character Encoding for Internet Messages. HF. Zhu, DY. Hu, ZG. Wang, 

TC. Kao, WCH. Chang & M. Crispin. March 1996. (Format: TXT=50995 bytes) (Status: 

INFORMATIONAL) 

[HZ-GB-2312] 

RFC 1842 ASCII Printable Characters-Based Chinese Character Encoding for Internet 

Messages. Y. Wei, Y. Zhang, J. Li, J. Ding, Y. Jiang. August 1995. (Format: TXT=24143 

bytes) (Status: INFORMATIONAL) 

[HZ] 

RFC 1843 HZ - A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and ASCII 

characters. F. Lee. August 1995. (Format: TXT=8787 bytes) (Status: INFORMATIONAL) 

[ISO-10646-J-1] 

RFC 1815 Character Sets ISO-10646 and ISO-10646-J-1. M. Ohta. July 1995. 

(Format: TXT=11823 bytes) (Status: INFORMATIONAL) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 69 - 

[ISO-2022-KR] 

RFC 1557 Korean Character Encoding for Internet Messages. U. Choi, K. Chon, H. Park. 

December 1993. (Format: TXT=8736 bytes) (Status: INFORMATIONAL) 

[ISO-2022-JP-2] 

RFC 1554 ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP. M. Ohta, K. Handa. 

December 1993. (Format: TXT=11449 bytes) (Status: INFORMATIONAL) 

[ISO-8859-8] 

RFC 1555 Hebrew Character Encoding for Internet Messages. H. Nussbacher, Y. Bourvine. 

December 1993. (Format: TXT=9273 bytes) (Status: INFORMATIONAL) 

[KOI8-R] 

RFC 1489 Registration of a Cyrillic Character Set. A. Chernov. July 1993. 

(Format: TXT=7798 bytes) (Status: INFORMATIONAL) 

[ISO-2022-JP] 

RFC 1468 Japanese Character Encoding for Internet Messages. J. Murai, M. Crispin, E. van 

der Poel. June 1993. (Format: TXT=10970 bytes) (Status: INFORMATIONAL) 

[VISCII] 

RFC 1456 Conventions for Encoding the Vietnamese Language VISCII: VIetnamese 

Standard Code for Information Interchange VIQR: VIetnamese Quoted-Readable 

Specification. Vietnamese Standardization Working Group. May 1993. (Format: TXT=14775 

bytes) (Status: INFORMATIONAL) 

[WWW-Charmodel] 

Character Model for the World Wide Web 

29 November 1999, Martin J. Dürst, François Yergeau 
http://www.w3.org/TR/1999/WD-charmod-19991129 

[Unicode-Markup] 

Unicode in XML and other Markup Languages 

28 September 1999, Martin Dürst, Mark Davis, Hideki Hiura, Asmus Freytag 
http://www.w3.org/TR/1999/WD-unicode-xml-19990928 

[MAIL-I18N] 

Using International Characters in Internet Mail 

prepared by Internet Mail Consortium 

http://www.w3.org/TR/1999/WD-charmod-19991129
http://www.w3.org/TR/1999/WD-unicode-xml-19990928


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 70 - 

Internet Mail Consortium Report: MAIL-I18N 

IMCR-010, August 1, 1998 
http://www.imc.org/mail-i18n.html 

[PLS] 

Portable Layout Services: Context-dependent and Directional Text 

The Open Group CAE Specification C616 

[DISS2] 

Distributed Internationalisation Services, Version 2 

The Open Group Snapshot S308 

[DIF] 

Distributed Internationalisation Framework 

The Open Group Snapshot S503 

[Mozilla L10N-Spec] 

Localization Engineering Check List 
http://www.mozilla.org/projects/intl/l10n_eng_chklist.html 

International Browser Character Coding Menu UI/UE Specifications 
http://www.mozilla.org/projects/intl/uidocs/browsercharmenu.html 

International Editor UI/UE Specifications 
http://www.mozilla.org/projects/intl/uidocs/editorcharmenu.html 

[ICMP] 

RFC 0792 Internet Control Message Protocol. J. Postel. Sep-01-1981. 

(Format: TXT=30404 bytes) (Obsoletes RFC0777) (Updated by RFC0950) 

(Also STD0005) (Status: STANDARD) 

 

RFC 0950 Internet Standard Subnetting Procedure. J.C. Mogul, J. Postel.  Aug-01-1985. 

(Format: TXT=37985 bytes) (Updates RFC0792) (Also STD0005) (Status: STANDARD) 

[SMTP] 

RFC 0821 Simple Mail Transfer Protocol. J. Postel. Aug-01-1982. (Format: TXT=124482 

bytes) (Obsoletes RFC0788) (Also STD0010) (Status: STANDARD) 

http://www.imc.org/mail-i18n.html
http://www.mozilla.org/projects/intl/l10n_eng_chklist.html
http://www.mozilla.org/projects/intl/uidocs/browsercharmenu.html
http://www.mozilla.org/projects/intl/uidocs/editorcharmenu.html


 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 71 - 

[RFC 822] 

RFC 0822 Standard for the format of ARPA Internet text messages. D. Crocker. 

Aug-13-1982. (Format: TXT=109200 bytes) (Obsoletes RFC0733) (Updated by RFC1123, 

RFC1138, RFC1148, RFC1327, RFC2156) (Also STD0011) (Status: STANDARD) 

[TELNET] 

RFC 0854 Telnet Protocol Specification. J. Postel, J.K. Reynolds. 

May-01-1983. (Format: TXT=39371 bytes) (Obsoletes RFC0764, NIC 18639) 

(Also STD 0008) (Status: STANDARD) 

 

RFC 0855 Telnet Option Specifications. J. Postel, J.K. Reynolds.  May-01-1983. (Format: 

TXT=6218 bytes) (Obsoletes NIC 18640) (Also STD0008) (Status: STANDARD) 

 

RFC 0856 Telnet Binary Transmission. J. Postel, J.K. Reynolds.  May-01-1983. (Format: 

TXT=9192 bytes) (Obsoletes NIC 15389) (Also STD0027) (Status: STANDARD) 

 

RFC 0857 Telnet Echo Option. J. Postel, J.K. Reynolds. May-01-1983. 

(Format: TXT=11143 bytes) (Obsoletes NIC 15390) (Also STD0028) 

(Status: STANDARD) 

 

RFC 0858 Telnet Suppress Go Ahead Option. J. Postel, J.K. Reynolds.  May-01-1983. 

(Format: TXT=3825 bytes) (Obsoletes NIC 15392) (Also STD0029) (Status: STANDARD) 

 

RFC 0859 Telnet Status Option. J. Postel, J.K. Reynolds. May-01-1983. 

(Format: TXT=4443 bytes) (Obsoletes RFC0651) (Also STD0030) (Status: STANDARD) 

 

RFC 0860 Telnet Timing Mark Option. J. Postel, J.K. Reynolds. May-01-1983. 

(Format: TXT=8108 bytes) (Obsoletes NIC 16238) (Also STD0031) 

(Status: STANDARD) 

 

RFC 0861 Telnet Extended Options: List Option. J. Postel, J.K. Reynolds.  May-01-1983. 

(Format: TXT=3181 bytes) (Obsoletes NIC 16239) (Also STD0032) (Status: STANDARD) 

[TELNET-CHARSET] 

RFC 2066 TELNET CHARSET Option. R. Gellens. January 1997. (Format: 

TXT=26088 bytes) (Status: EXPERIMENTAL) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 72 - 

[FTP] 

RFC 0959 File Transfer Protocol. J. Postel, J.K. Reynolds. Oct-01-1985.  (Format: 

TXT=151249 bytes) (Obsoletes RFC0765) (Updated by RFC2228, RFC2640) (Also 

STD0009) (Status: STANDARD) 

[DNS] 

RFC 0974 Mail routing and the domain system. C. Partridge. Jan-01-1986. 

(Format: TXT=18581 bytes) (Also STD0014) (Status: STANDARD) 

 

RFC 1034 Domain names - concepts and facilities. P.V. Mockapetris.  Nov-01-1987. 

(Format: TXT=129180 bytes) (Obsoletes RFC0973, RFC0882, RFC0883) (Obsoleted by 

RFC1065, RFC2308) (Updated by RFC1101, RFC1183, RFC1348, RFC1876, RFC1982, 

RFC2065, RFC2181, RFC2308, RFC2535) (Also STD0013) (Status: STANDARD) 

 

RFC 1035 Domain names - implementation and specification. P.V. Mockapetris. 

Nov-01-1987. (Format: TXT=125626 bytes) (Obsoletes RFC0973, RFC0882, RFC0883) 

(Updated by RFC1101, RFC1183, RFC1348, RFC1876, RFC1982, RFC1995, RFC1996, 

RFC2065, RFC2181, RFC2136, RFC2137, RFC2308, RFC2535) (Also STD0013) (Status: 

STANDARD) 

[LPD] 

RFC 1179 Line printer daemon protocol. L. McLaughlin. Aug-01-1990. 

(Format: TXT=24324 bytes) (Status: INFORMATIONAL) 

[POP3] 

RFC 1939 Post Office Protocol - Version 3. J. Myers & M. Rose. May 1996.  (Format: 

TXT=47018 bytes) (Obsoletes RFC1725) (Updated by RFC1957, RFC2449) (Also 

STD0053) (Status: STANDARD) 

[*** POP3 Extensions ***] 

RFC 1957 Some Observations on Implementations of the Post Office Protocol (POP3). R. 

Nelson. June 1996. (Format: TXT=2325 bytes) (Updates RFC1939) (Status: 

INFORMATIONAL) 

 

RFC 2449 POP3 Extension Mechanism. R. Gellens, C. Newman, L. Lundblade. 

November 1998. (Format: TXT=36017 bytes) (Updates RFC1939) (Status: 

PROPOSED STANDARD) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 73 - 

[*** RFC 822 Extensions ***] 

RFC 1123 Requirements for Internet hosts - application and support. R.T. 

Braden. Oct-01-1989. (Format: TXT=245503 bytes) (Updates RFC0822) 

(Updated by RFC2181) (Also STD0003) (Status: STANDARD) 

 

RFC 1138 Mapping between X.400(1988) / ISO 10021 and RFC 822. S.E. Kille.  

Dec-01-1989. (Format: TXT=191029 bytes) (Obsoleted by RFC1327, RFC1495, RFC2156) 

(Updates RFC0822, RFC0987, RFC1026) (Updated by RFC1148) (Status: 

EXPERIMENTAL) 

 

RFC 1148 Mapping between X.400(1988) / ISO 10021 and RFC 822. S.E. Kille.  

Mar-01-1990. (Format: TXT=194292 bytes) (Obsoleted by RFC1327, RFC1495, RFC2156) 

(Updates RFC0822, RFC0987, RFC1026, RFC1138) (Status: EXPERIMENTAL) 

 

RFC 1327 Mapping between X.400(1988) / ISO 10021 and RFC 822. S. Hardcastle-Kille. 

May 1992. (Format: TXT=228598 bytes) (Obsoletes RFC987, RFC1026, RFC1138, 

RFC1148) (Obsoleted by RFC1495, RFC2156) (Updates RFC0822, RFC0822) (Status: 

PROPOSED STANDARD) 

 

RFC 2156 MIXER (Mime Internet X.400 Enhanced Relay): Mapping between X.400 and 

RFC 822/MIME. S. Kille. January 1998. (Format: TXT=280385 bytes) (Obsoletes RFC0987, 

RFC1026, RFC1138, RFC1148, RFC1327, RFC1495) 

(Updates RFC0822) (Status: PROPOSED STANDARD) 

[*** FTP Extensions ***] 

RFC 2228 FTP Security Extensions. M. Horowitz, S. Lunt. October 1997.  (Format: 

TXT=58733 bytes) (Updates RFC0959) (Status: PROPOSED STANDARD) 

[FTP-I18N] 

RFC 2640 Internationalization of the File Transfer Protocol. B. Curtin.  July 1999. (Format: 

TXT=57204 bytes) (Updates 959) (Status: PROPOSED STANDARD) 

[*** DNS Extensions ***] 

RFC 1101 DNS encoding of network names and other types. P.V. Mockapetris. 

Apr-01-1989. (Format: TXT=28677 bytes) (Updates RFC1034, RFC1035) 

(Status: UNKNOWN) 

 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 74 - 

RFC 1183 New DNS RR Definitions. C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V. 

Mockapetris. Oct-01-1990. (Format: TXT=23788 bytes) (Updates RFC1034, RFC1035) 

(Status: EXPERIMENTAL) 

 

RFC 1348 DNS NSAP RRs. B. Manning. July 1992. (Format: TXT=6871 bytes) (Obsoleted 

by RFC1637) (Updates RFC1034, RFC1035) (Updated by RFC1637) (Status: 

EXPERIMENTAL) 

 

RFC 1637 DNS NSAP Resource Records. B. Manning, R. Colella. June 1994. 

(Format: TXT=21768 bytes) (Obsoletes RFC1348) (Obsoleted by RFC1706) 

(Updates RFC1348) (Status: EXPERIMENTAL) 

 

RFC 1706 DNS NSAP Resource Records. B. Manning, R. Colella. October 1994. 

(Format: TXT=19721 bytes) (Obsoletes RFC1637) (Status: INFORMATIONAL) 

 

RFC 1876 A Means for Expressing Location Information in the Domain Name System. C. 

Davis, P. Vixie, T. Goodwin, I. Dickinson. January 1996.  (Format: TXT=29631 bytes) 

(Updates RFC1034, RFC1035) (Status: EXPERIMENTAL) 

 

RFC 1982 Serial Number Arithmetic. R. Elz & R. Bush. August 1996. (Format: 

TXT=14440 bytes) (Updates RFC1034, RFC1035) (Status: PROPOSED STANDARD) 

 

RFC 1995 Incremental Zone Transfer in DNS. M. Ohta. August 1996. (Format: 

TXT=16810 bytes) (Updates RFC1035) (Status: PROPOSED STANDARD) 

 

RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY). 

P. Vixie. August 1996. (Format: TXT=15247 bytes) (Updates RFC1035) 

(Status: PROPOSED STANDARD) 

 

RFC 2065 Domain Name System Security Extensions. D. Eastlake, 3rd, C. Kaufman. 

January 1997. (Format: TXT=97718 bytes) (Obsoleted by RFC2535) (Updates RFC1034, 

RFC1035) (Status: PROPOSED STANDARD) 

 

RFC 2181 Clarifications to the DNS Specification. R. Elz, R. Bush. July 1997. (Format: 

TXT=36989 bytes) (Updates RFC1034, RFC1035, RFC1123) (Updated by RFC2535) 

(Status: PROPOSED STANDARD) 



 
 
LI18NUX 2000 Globalization Specification Version 1.0 with Amendment 23 

 - 75 - 

 

RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE). P. Vixie, Ed., S. 

Thomson, Y. Rekhter, J. Bound. April 1997. (Format: TXT=56354 bytes) (Updates 

RFC1035) (Status: PROPOSED STANDARD) 

 

RFC 2137 Secure Domain Name System Dynamic Update. D. Eastlake. April 1997. 

(Format: TXT=24824 bytes) (Updates RFC1035) (Status: PROPOSED STANDARD) 

 

RFC 2308 Negative Caching of DNS Queries (DNS NCACHE). M. Andrews. March 1998. 

(Format: TXT=41428 bytes) (Obsoletes RFC1034) (Updates RFC1034, RFC1035) (Status: 

PROPOSED STANDARD) 

 

RFC 2535 Domain Name System Security Extensions. D. Eastlake. March 1999. 

(Format: TXT=110958 bytes) (Updates RFC2181, RFC1035, RFC1034) 

(Status: PROPOSED STANDARD) 

 

Annex F (Informative): Rationale for exceptions 

(This Annex is informative only and does not contain any requirements to the conforming 

implementations.) 

[A] 

Impossible to fix due to shortcoming of Standard API 

[B] 

External specifications referenced in the LI18NUX specification are unstable or evolving. 

 


	1.Foreword
	1.1Scope
	1.2Normative References
	1.3Conformance
	1.3.1Conforming Environments
	(1)Application Execution Environment [Obsolescence]
	(2)End User Environment
	(a)Server Environment [Obsolescence]
	(b)Desktop Environment

	(3)Software Development Options

	1.3.2Conformance Levels
	(1)Level 1
	(2)Level 2



	2.Terminology
	2.1Definition of Terms
	2.2General Terms

	3.Base Libraries
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	4.Shells and Utilities
	(1)Scope
	(2)Requirements
	(a)Locale
	(b)Text Editor
	(c)Date and Time formatting
	(d)Text Processing
	(e)Regular Expressions
	(f)Filename Handling
	(g)General Text Editor
	(h)Terminal Emulator
	(i)Message catalogs
	(j)Message Handling

	(3)Implementation Examples
	(4)Future Direction
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	Future Directions

	6.Graphical User Interface
	6.1Graphic Libraries
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	6.2Graphic Toolkits and X Window Servers
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Directions


	7.Input Methods
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	8.Output Methods
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	9.Network Servers
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Directions

	10.Internet Tools
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	11.Printing
	(1)Scope
	(2)Requirements
	(3)Implementation Examples
	(4)Future Direction

	Annex A (Normative): Environment Variables
	Annex B (Normative): Supported locales and codesets
	Annex C (Normative): Publicly Available Specification
	C.1 gettext message handling functions
	
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	EXAMPLES
	APPLICATION USAGE
	FUTURE DIRECTIONS


	C.2 <libintl.h> header
	
	NAME
	SYNOPSIS
	DESCRIPTION
	APPLICATION USAGE
	FUTURE DIRECTIONS


	C.3 msgfmt utility
	
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	OPERANDS
	STDIN
	INPUT FILES
	ENVIRONMENT VARIABLES
	STDOUT
	STDERR
	OUTPUT FILES
	EXTENDED DESCRIPTION
	EXIT STATUS
	APPLICATION USAGE
	EXAMPLES
	FUTURE DIRECTIONS


	C.4 xgettext utility
	
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	OPERANDS
	STDIN
	INPUT FILES
	ENVIRONMENT VARIABLES
	STDOUT
	STDERR
	OUTPUT FILES
	EXTENDED DESCRIPTION
	EXIT STATUS
	APPLICATION USAGE
	EXAMPLES
	FUTURE DIRECTIONS


	C.5 msgmerge utility
	
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	OPERANDS
	STDIN
	INPUT FILES
	ENVIRONMENT VARIABLES
	STDOUT
	STDERR
	OUTPUT FILES
	EXTENDED DESCRIPTION
	EXIT STATUS
	APPLICATION USAGE
	EXAMPLES
	FUTURE DIRECTIONS


	C.6 gettext utility
	
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	OPERANDS
	STDIN
	INPUT FILES
	ENVIRONMENT VARIABLES
	STDOUT
	STDERR
	OUTPUT FILES
	EXTENDED DESCRIPTION
	EXIT STATUS
	APPLICATION USAGE
	EXAMPLES
	FUTURE DIRECTIONS



	Annex D (Informative): Base Components
	Scope
	** System Interfaces:
	** Commands and Utilities:
	** Commands and Utilities:
	** Protocols:

	Annex E (Informative): Informative References
	Annex F (Informative): Rationale for exceptions

